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Executive Summary 

As required in ESSB 5689, Section 219 (4), this study investigated the design and 

feasibility of noise mitigation strategies for installation in modular expansion joints (MEJs), with 

a focus on Washington state’s SR 520 bridge. The three main sources of noise from MEJs include 

resonance of the air within the gaps, resonance of the beams, and resonance of the tires. By filling 

the gaps in the MEJs with engineered chevron support structures, we showed that it is feasible to 

significantly reduce the noise from MEJs. We performed both experimental and computer 

evaluations of a noise attenuation system before performing limited testing on the SR 520 bridge.  

Installation of the treatment on one westbound lane of the east MEJ of the SR 520 bridge 

proved to be highly effective over the two-month test period. At a distance of 160 feet, we 

measured a more than 70 percent reduction in audible noise over the noise of background traffic 

throughout the testing period. Beyond 160 feet the difference between noise from the concrete 

road surface and from the MEJ became so small that it became very difficult to identify when 

individual cars crossed the MEJ. While we have shown that the chevron system can be an effective 

solution to the expansion joint noise issue, we outline further development and testing to extend 

the durability of the treatment. 
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1. Introduction 

Bridge and viaduct expansion joints play a critical role worldwide by enabling movement 

of the structure with changing environmental conditions. Expansion joints can be found on bridges 

around the world, each with specific designs, dimensions, and materials (see Figure 1-1). However, 

they all share the same concept: they connect two isolated sections of a bridge to provide a 

continuous medium for travellers1. The reason for having two isolated sections on the bridge in 

the first place is to make sure that expansion and contraction of the bridge due to changes in water 

level (for floating bridges), changes in temperature, lateral and rotational movement induced by 

wind and current, and general land movement do not cause any damage. The expansion allows 

motion to occur without causing excessive stress in the bridge that can lead to failure. 

While expansion joints remain a necessary component for effective development, they also 

contribute to noise pollution and  have become an area of focus for many acoustic studies and 

noise mitigation strategies2–9. Several potential technologies reduce expansion joint noise, such as 

sinus plates1,10,11, foam inserts8,12, and Helmholtz absorbers6;  however, these solutions either 

require large-scale bridge renovation, fail to effectively reduce broadband noise, or require 

frequent maintenance. Here we suggest alternative sound mitigation strategies that show great 

potential for effectively retrofitting existing expansion joints.  

Large modular expansion joints (MEJs) such as those installed on Washington state’s 

Evergreen Point Floating Bridge (SR 520 bridge) tend to result in nuisance noise generation. 

Shortly after that bridge opened in 2016, the Washington State Department of Transportation 

(WSDOT) began receiving noise complaints related to the large expansion joints on the east and 

west ends of the bridge. The noticeable impact of each car hitting the MEJs contributes to noise 

pollution in the area. While this specific bridge has received complaints since its opening, similar 

expansion joints across the state and beyond pose similar difficulties associated with noise. To 

combat this problem, we developed, fabricated, and installed a test noise mitigation treatment in a 

single lane of the SR 520 floating bridge. Over the course of two months, we recorded and 

processed sound data to evaluate our results. Through this study, we gained significant insight into 

the mechanism and practical mitigation of MEJ noise.  
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1.1 The Modular Expansion Joint 

To reduce the noise coming from the SR 520 bridge, we must consider the general design 

of the existing modular expansion joint (MEJ). The expansion joint consists of a closing box 

connected to a concrete block (one side of the bridge) and an opening box connected to the other 

side (Figure 1-1). A central beam runs between the boxes, leaving room toward the end of one box 

for expansion and contraction13. Supported on the central beam are the I-beams that protrude out 

of the sub-structures of the expansion joint, forming a travel surface with the rest of the bridge.  

 

Figure 1-1. Expansion joint as designed (left) and installed (right). The I-beams run across the lanes 
to provide a continuous medium of traffic with the two sides of the bridge. 

 
The main material used in the expansion joint is steel, with various hardening and grades 

in some critical regions, for example the shear studs that connect to the concrete. A gap exists 

between any two I-beams (including the edge beam and the first I-beam from each side). This gap 

changes width with the opening and closing of the expansion joint. A seal made of a flexible 

material (Neoprene) is mounted between each beam (below the surface of travel) to collect debris, 

dirt, water and/or any parts/particles that can potentially cause damage to the substructure of the 

expansion joint, as well as to keep untreated water and debris from entering Lake Washington.  A 

large, enclosed cavity exists underneath the expansion joint on the east side to provide noise 

reduction and easy access to the expansion joints for servicing and replacing parts.  
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1.2 The Source of Noise 

The source of the noise was discussed in detail in our previous research report, “Modular 

Expansion Joint Noise Mitigation Study,” which was prepared for WSDOT in January 2019. This 

report discussed that the noise emanating from expansion joints is due to the following: 

• The acoustic resonances of the air cavity enclosed by the tire, seal, and beams. 

• Motion of the beams as they are excited by the tires when they strike the edges of the 

beams. 

• The deformation of the tires as they strike the beams. 

Additional conclusions from the previous study include the following: 

• The noise as evaluated by energy spectral density (ESD) at residential locations is 

highest between 400 Hz and 800 Hz. ESD at the bridge close to the expansion joint is 

also highest between 400 Hz and 800 Hz. 

• Most of the noise radiates from the top of the modular expansion. 

• The frequency characteristics of the noise for vehicle-pass events are closely related to 

vehicle tire width. The frequency peak for wider tires occurs at lower frequencies than 

that for narrower tires. This is a result of excitation of the air volume between the tire 

and the air gap between center beams. 

• A concrete joint cavity enclosure (WSDOT design) under the east expansion bridge 

significantly reduces the noise coming from the underside of the bridge.  

• Filling the gaps between the center beams could reduce the noise on the SR 520 bridge 

and other expansion joints. 

 

Understanding the cause of the noise is critical for exploring potential solutions. The 

previous report from the University of Washington (UW) successfully showed the levels of noise 

at various frequencies. In general, noises can generate from various sources, and the literature 

would categorize these sources on the basis of various generation mechanisms (things like 

frequency ranges, type, and nature). In this work, we identified two main generation mechanisms. 

The first one is acoustic radiation from the tire and the beams when the tires hit the edge of the I-

beam on the expansion joint. The second-generation mechanism is acoustic radiation from the 

sudden compression and expansion of the air within the cavity formed by the seal and the top part 

of any two neighboring I-beams when a tire passes over the cavity. This can be viewed as a type 

https://wsdot.wa.gov/publications/fulltext/LegReports/17-19/ExpansionJointNoiseMitigationStudy.pdf
https://wsdot.wa.gov/publications/fulltext/LegReports/17-19/ExpansionJointNoiseMitigationStudy.pdf
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of Helmholtz resonator phenomenon. The previous study found a generally inverse relationship 

between tire width and dominant frequency such that 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the peak of the ESD and 𝑊𝑊𝑡𝑡 is the 

width of the tire.  

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∝
1
𝑊𝑊𝑡𝑡

 

We simulated the deformation of the tire and the excitation pressure on the MEJ I-beams 

(Figure 1-2) with the help of a finite element model (see details in section 3. Methodology) of the 

tire and section of the expansion joint. As a tire rolls across the joint, it drops into the gap between 

the MEJ I-beams. As it meets the leading edge of the next I-beam, the tire accelerates upward, 

creating a pressure spike and exciting the structure and tire (Figure 1-2). By adding a structure that 

resists vertical deformation in the gap, we can support the tire as it rolls overhead, reducing the 

distance that the tire drops and subsequently reducing the pressure spike between the tire and the 

I-beam. 

Figure 1-2. A) Computer aided design (CAD) model for the vehicle tire and I-beam design for 
simulation. B) A sharp pressure spike occurs as the tire rolls over the leading edge of the second I-

beam. C) Visualization of peak pressure on the I-beam surface. 

   

As a vehicle rolls over the expansion joint on the east side of the bridge, we observed in our 

measured noise data two distinct peaks in noise as each pair of tires (front and rear) strikes the 

beams of the MEJ. A third, smaller peak in noise occurs as the vehicle passes over a smaller joint 

slightly past the main joint. For testing, we considered a single event to be the time between the 
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front tires striking the first I-beam in the joint (Figure 1-3.B) and the vehicle completely passing 

the expansion joint (Figure 1-3.I). To evaluate smooth road noise, we sampled the audio directly 

before the vehicle rolled onto the expansion joint (before Figure 1-3.A)   

 

 
 

  

Figure 1-3. Overview of car-pass events using simultaneous noise and video recordings. Screenshots 
from high-speed video are assigned to specific parts of the noise recording using letters (A)-(I). 
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2. Noise Mitigation Design 

2.1 Design Constraints 

As described in our previous report, we must address three main noise generation 

mechanisms to create an effective noise mitigation treatment. These include 1) the vibration 

amplitude of the I-beams impacted by the tire, 2) the acoustic resonance amplitude of the air cavity 

under the tire, and 3) the noise emitted from the tire itself as it rolls across the MEJ. For each of 

these noise generation mechanisms, the exciting force is generated by the tire deforming into the 

gap between the beams as the tire crosses the expansion joint. By filling the space between each 

I-beam, we can reduce the amount by which the tire slips into the gaps, and as a result, limit 

pressure spikes in the beam, tire, and cavity simultaneously. To be effective, this treatment must 

partially be able to support the load of the tire while still allowing the joint to function as intended 

and surviving the wear of traffic and weather over time. 

The geometric and structural constraints of the modular expansion joint create a 

challenging design problem. First, the structure must allow the MEJ to regularly open and close 

with gaps that shift between .84 in. to 3 in. during normal operation. The floating bridge has both 

vertical, rotational, and transverse movements up to 9 degrees that must be accounted for. Under 

extreme conditions the Pontoon "W” gap can potentially completely close to a 0-in. gap or expand 

to a width of 3.85 in. The pontoon “A” gap can expand to a width of 4.38 in. If the gap fully closes, 

the design must be easy to remove, or in a worst-case scenario the structure must selectively fail 

to allow full closure, ensuring that no damage occurs to the MEJ or bridge. Additionally, the 

solution should also be easy to install, durable, and include a moisture seal to prevent dirt, gravel, 

water, etc. from penetrating the substructure of the expansion joint or entering Lake Washington. 

These requirements necessitate a unique structure design that must have a horizontal expansion 

ratio of greater than 3.5 while still being able to partially support the weight of a semi-truck in the 

vertical direction. These designs must be extremely durable to withstand extended exposure to 

overhead roadway traffic and weather of all kinds.  

2.2 Candidate Design Overview 

To match the shifts in the beam gaps, the structure must expand and contract along the 

roadway with no material interference or height change along the length of the gap. To do this, our 

designs incorporate flexible chevrons tailored to have a net zero Poisson’s ratio behavior (Figure 

2-1). This allows material to remain fastened in place and level with the roadway as the MEJ 
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expands and contracts over time. In between the I-beams, a neoprene moisture seal fastens to each 

beam via a welded metal connector (Figure 2-1).  We explored two main design categories to 

retrofit the existing structure: 1) a single-layer design that we can install without removing the 

current moisture seal and 2) a multilayer support system with a custom fabricated moisture seal to 

replace the current version. 

 

 

Figure 2-1. A) Single-layer elastomer chevron design with original moisture seal, installed 
between MEJ I-beams. B) Multi-layer design with an elastomer top layer and custom 

moisture seal.  
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2.3 Single-Layer Design 

To offer the simplest solution, we propose retrofitting the existing MEJs such that no 

components need to be modified or replaced. To avoid altering the current moisture seal, we 

designed a support component that fits into the space accessible from the surface of the bridge. 

This support must be durable enough to withstand roadway wear and must compress/expand 

between .85 in. and 3 in. without yielding. Under extreme compression it must fail and squeeze 

out of the MEJ without causing any damage, meaning that rigid materials such as steel cannot be 

used. Rather than creating a traditional hinge design, which can be susceptible to blocking with 

grime and binding, we designed chevron structures with compliant flexure joints. These structures 

can be easily 3D printed or cast for prototyping and can eventually be injection molded for large-

scale manufacturing. For installation, these can be easily compressed and inserted into the existing 

gaps.  

To select the support shape, we created a chevron with the thickest beam and flexure width 

possible while still adhering to space limitations. To optimize material, we tapered the edge of 

each beam to neatly mesh with surrounding components during compression. This design relies 

on glued connections at each beam edge and small geometric interference between the moisture 

seal and the chevrons. For initial prototyping and testing, we fabricated these joints out of a variety 

of high durometer elastomers with shore hardness values between 85A-95A. For initial models, 

we 3D printed structures from Ninjatek–Cheetah thermoplastic polyurethane (TPU). These 

prototypes exhibited desirable traits, but fused deposition modelling (FDM) 3D printing could not 

be scaled to fabricate enough durable samples for our test on the SR 520 bridge. To create a larger 

number of high-quality durable parts, we instead switched from 3D printing to urethane casting. 

This process creates high quality parts with many high durability and commercial-grade options. 

We selected 90A durometer urethane from BJB Enterprises called FP90 A/B. With this material, 

our finite element models showed enough strength to tolerate complete compression of the 

structure within the MEJ’s normal working limits (Figure 2-2). To test the structure’s behavior in 

extreme conditions when the joint fully closed (a gap of 0 in.), we compressed a Ninjaflex chevron 

support using an Instron universal testing system with a force of 180 KN. This caused the support 

to squeeze to a final width of 0.164 in. and expand outward toward the edges of the test plates.  
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Figure 2-2. A) Plot of maximum internal stress as the support structure fully compresses. B) 
Detailed visualization of stress over the surface of each chevron element throughout 

i   

 

 

We performed the initial high-speed testing to assess the feasibility of different materials and 

geometry given a perfectly rigid lower support (roadway) (Figure 2-3). We investigated two 

potential material types: rigid plastic and semi rigid, high-durometer rubber (Appendix A) and 

performed tests at the PACCAR Facility in Mount Vernon, Washington. While these results 

demonstrated the feasibility of the supports in reducing noise in shallow roadway gaps, they also 

highlighted the importance of acoustic resonance in the cavities of the bridge structure. Even 

though we performed our testing on gap widths similar to those on the bridge, we recorded much 

lower noise levels on every configuration than those measured on the bridge. This indicated that 

that the resonance of the air cavities between the supports of the structure played a much larger 
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role than the magnitude of the tire and beam impacts. It was difficult to create an experimental set-

up that closely resembled the true expansion joint. One issue was that the wooden ramps leading 

to the beams (Figure 2-3) created loud noises upon impact, making it difficult to process the data 

and draw detailed conclusions about the results.  While we measured decreases in total noise with 

the added supports, background noise from the ramps made it difficult to confidently interpret the 

results. 

 

Figure 2-3. A) High speed test set-up. We made five 3-in. gaps by gluing a wooden ramp and 2-ft x 
3.5-in. x75-in. metal beams to the roadway using a silicon-based glue. Two microphones sat before 
and after the test set-up to record noise (white boxes). B) Results showed slightly improved noise 

reduction with the more rigid material supporting the tire. 

 

 

 

2.4 Multi-Layer Design 

While the single-layer support design (Figure 2-1.A) benefits from simple fabrication and 

installation, an additional support layer could offer better resistance to deformation, potentially 

improving performance and reducing stress at glued connections (Figure 2-1.B). The bottom 

support structure rests in the I-beam cavity, supported by the lower flange of each I-beam. The 

lower support structure must repeatedly expand and compress between 5.875 in. and 2.875 in. to 

match the motion of MEJ Pontoon “W”; this offers significantly wider compression during the 

event of a fully closed joint than the upper support. Here, no possibility exists for the gap to fully 

close, so spring steel remains a viable material option. We designed two different support 

structures, a high-durometer urethane chevron and an interlocking, laser cut spring steel frame 
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(Figure 2-4). The urethane structure offers far less rigidity but could be injection molded or 

extruded for a low-cost solution.  

We fabricated the elastomer structure by 3D printing molds and casting individual 

chevrons out of SmoothOn PMC 790 two-part urethane. We then glued overlapping portions to 

get a single connected structure. We ordered spring steel structure components to be laser cut and 

heat treated to improve elasticity. Notches in each sheet allowed easy assembly, and the chevrons 

attached to side plates with bolts (potentially rivets). For future installation, both structures may 

be installed by first clamping each section into a compressed state and dropping them into the gap, 

where they will be held in place by outward pressure. A layer of plastic siding must be included 

between the support and the beam to ensure no damage to the beam surface. To avoid interference 

with internal joint components such as nuts and bolts, the support must be selectively placed in 

small sections, potentially increasing installation time. 

 

Figure 2-4. Bottom support structures. (Left) Chevron design fabricated from high durometer 
urethane. (Right) Structure fabricated from interlocking spring steel. 

 
To validate our simulations and assess the potential of various multi-layer designs, we built 

a static compression test set-up (Figure 2-5) with reconfigurable components and tested eight 

different configurations for support deformation and edge pressure. To create realistic conditions, 

we fabricated I-beams matching those found on the SR 520 Bridge MEJ and drove a vehicle so 

that it rested on the installed supports. We used Fujifilm 70-350 psi Prescale pressure paper to 

determine edge pressure and an IFM diffuse light photoelectric distance sensor to measure 

deformation in the structure. On the physical MEJ, the largest tire deformations and subsequent 

impacts occur when the gap spans a larger distance. We positioned the I-beams accordingly to 

have a 3-in. gap, the maximum MEJ gap width within its normal working range. Every support 
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combination significantly reduced deformation in comparison to the untreated (unsupported) 

version. Between the two potential base supports, the spring steel version consistently performed 

far better than the urethan support, making it a strong candidate for future implementation. 

 

 
Figure 2-5. A) Set-up for static compression testing. B) Measured results from compression testing. 

Measured Deformation 

Compression Test 
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2.5 Design Selection 

While both designs have potential to significantly reduce noise created by the Washington 

SR 520 modular expansion joints, we weighed practical considerations for implementing each 

support structure. We used finite element models to compare the influence of each on the resulting 

pressure spike caused by the tire on the beam edge. For the completely unsupported gap, the tire 

creates a sharp increase in pressure, with a peak of 4.39 MPa. For a perfectly flat road, the pressure 

of the tire rolling over the flat surface still creates a pressure spike but a much lower one, topping 

out at 1.45 MPa. If we consider the unsupported version to be the worst-case scenario, and the 

supported to be the best case, we can look at the percentage pressure reduction for each of the 

options.  

% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(𝑃𝑃𝑢𝑢𝑢𝑢 − 𝑃𝑃𝑓𝑓𝑓𝑓) − (𝑃𝑃𝑠𝑠 − 𝑃𝑃𝑓𝑓𝑓𝑓)

(𝑃𝑃𝑢𝑢𝑢𝑢 − 𝑃𝑃𝑓𝑓𝑓𝑓)
 

with 𝑃𝑃𝑢𝑢𝑢𝑢 being unsupported pressure, 𝑃𝑃𝑓𝑓𝑓𝑓 being flat surface pressure, and 𝑃𝑃𝑠𝑠 being pressure of the 

support. Given the values shown in Figure 2-6, we see that the single-layer chevron support 

provided a pressure reduction of 67.17 percent, while the multi-layer chevron support 

(approximated as a rigid lower support) provided a pressure reduction of 76.40 percent. This may 

equate to driving over a slightly textured road as opposed to driving over a set of distinct metal 

beams such as a cattle guard. While the multi-layer support offered better reduction, both solutions 

provided significant improvements over the original unsupported beam gap. For these simulations, 

we focused specifically on the 3-in. beam gap configuration; a smaller gap may have shown lower 

overall values but would represent similar corresponding trends. In these simulations, we 

considered the connection between the support and the beams to be in contact. This connection 

relied on the surfaces to be bonded by either mechanical interference or a chemical adhesive. The 

multi-layer design did not rely as heavily on such a connection because of the support from below.  

In addition to reducing pressure, each of the solutions deformed vertically and underwent 

internal stresses as vehicles rolled over top.  For a 3-in. gap, the multi-layer support option had 

maximum internal stresses of 2.91 MPa and a surface deformation of 2.08 mm. The single-layer 

option had a significantly higher maximum stress of 4.64 MPa and a surface deformation of 3.60 

mm. Stresses for both options were well below FP90’s tensile strength of 14.5 MPa. The 3-in. gap 

represented the worst-case loading scenario; for smaller gaps we expect internal stresses to be 

reduced.   
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Unsupported 

Single-Layer 
Chevron Support 

Multi-Layer 
Chevron Support 

Flat surface 

Figure 2-6. A) Mesh for the FEA of the rolling tire. B)  Pressure curves as the tire strikes the leading 
edge of the second beam. C) Visualizations of the pressure on the edge of the beam for each treatment 

option. 

) 
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Single-

  

Multi-Layer 

 

Figure 2-7. FEA visualizations of deformation of the top surface and internal stresses within the 
support as the tire rolls over the top.  

 
Despite the slightly improved functionality of the multi-layer design, practical 

considerations favor installation of the single-layer design. Reducing the number of parts can 

drastically decrease the cost of fabrication and installation time. The reductions in internal stresses 

and pressures on beam edges are minimal in comparison to the benefits of simplicity. Along with 

analysis of the support structure, the adhesive and foam type for the single layer support structure 

also require careful consideration. Optimizing these materials will be critical to the long-term 

success of the treatment. To weigh the pros and cons of each solution, Table 2-1 summarizes 

significant points for each aspect of the design. 

Given the points shown in the table, solution 1 (single-layer support) seems to be the best 

candidate for effective and affordable implementation. Solution 2 (multi-layer support) may 

provide increased resistance to deformation and reduce overall excitation of the system, but it 

requires far more complex and expensive fabrication and installation. For installation and field 

testing, we selected the single-layer support. Future work could investigate additional cost and 

durability trade-offs for a multi-layer support structure. Although the single-layer option seems 

like a better solution for retroactive installation, the multi-layer support could be potentially 

implemented in new bridge infrastructure.   
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Table 2-1: Key design points for multi-layer design vs single-layer design 

Design Aspect Single-Layer Design Multi-Layer Design 
Moisture seal 
replacement 

Incorporates current moisture seal. Required custom seal design, 
fabrication, and installation. 
 

Structure Fabrication 

Less complex fabrication that easily 
scales through urethane casting or 
injection molding. 
 

Additional fabrication and 
assembly required for lower 
support. 
 

Installation 
Significantly simpler installation. Multi-step installation 

required. 
 

Pressure Reduction 
Less reduction of pressure on the 
beam edge and impulse on the tire. 
 

Higher reduction of pressure 
on beam and impulse on tire. 
 

Durability 

Less vertical support and greater 
reliance on beam edge contact.  

Improved vertical support 
may lead to slightly better 
durability. 
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3. Methodology 

3.1 Sound Equipment  

Throughout this project, we used the same methodology and instruments used to complete 

the UW’s phase 1 Modular Expansion Joint Noise Mitigation Study14. We took noise 

measurements with a Brüel and Kjaer Type 2270-S, class 1 (BK2270) sound level meter. We 

sampled acoustic data at a frequency of 48,000 Hz and recorded the files as 24-bit .wav files. We 

calibrated our files using a Brüel and Kjaer Type 4231 sound calibrator that outputs a 94±0.2 dB 

re 20 𝜇𝜇Pa tone at 1000 Hz.  

3.2 Data Collection and Processing 

Each sound level recording consisted of ~90 seconds of audio, during which many vehicles 

struck the modular expansion joint. To extract meaningful results from our sound measurements, 

we manually labelled events by selecting the start and end time of every vehicle that passed over 

the desired portion of the expansion joint. To do this, we compared matched video recordings to 

each audio recording to observe the specific time that each vehicle successfully struck the 

expansion joint segment in which our treatment was installed. To limit the influence of additional 

background noise, we selected only samples in which a single vehicle drove over the MEJ at a 

time. Additionally, we marked a short period (~.1 second) directly before the vehicle struck the 

expansion joint to act as a baseline measurement for comparison between the flat roadway and the 

MEJ for each vehicle. We used the open-source audio editor Audacity to mark and export text files 

with this information.  

Next we computed the energy spectral density (ESD) to measure the associated spectra for 

each event15,16. This computation adapted the general method used during phase 1 of this project14, 

and leveraged the SciPy. Signal toolbox17 in Python to compute the power spectral density (PSD). 

We presented the ESD in dB with reference to 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 of 1 𝐽𝐽/𝑚𝑚2/𝐻𝐻𝐻𝐻 (𝑜𝑜𝑜𝑜 10 𝑙𝑙𝑜𝑜𝑜𝑜10(𝐸𝐸𝐸𝐸𝐸𝐸/𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟)). 

 

𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑇𝑇𝑒𝑒

𝜌𝜌𝜌𝜌
 

 

with 𝑇𝑇𝑒𝑒 being event duration, 𝜌𝜌 the density of air (1.225 𝑘𝑘𝑘𝑘/𝑚𝑚3), and 𝑐𝑐 the speed of sound in air 

(340 𝑚𝑚/𝑠𝑠). For the ESD computation, we applied a Tukey (tapered-cosine) window with 25 

percent tapering to the time series, and a Fast-Fourier Transform (FFT) zero padded to a length of 
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4 × 𝑓𝑓5 (or 192,000 samples). Using a standard FFT length allowed spectral averages to be 

computed. It is important to note that ESD should not be confused with a pressure level widely 

used for measuring environmental noise. In comparing the ESD of two events, however, a higher 

ESD corresponds to a higher noise level. The Federal Highway Administration uses either 15-min 

or 1-hour equivalent sound levels, 𝐿𝐿𝑒𝑒𝑒𝑒, and third-octave sound levels to measure compliance and 

noise abatement criteria. In this project we used ESD, as it allows transient events with varying 

durations to be compared. This is an effective tool to help investigate the mechanism(s) responsible 

for expansion joint noise, including their spectral characteristics, which was one of the main goals 

of this project. To apply a correction that accounted for the relative loudness of sounds perceived 

by the human ear, we applied A-weighting to some samples (SM). For these samples, ESD will be 

presented as dBA. 

3.3 Simulation Information 

3.3.1 Tire and Beam Model 

 We created a car tire model that approximated the complex geometry of a physical tire 

while preserving key characteristics. The computer aided design (CAD) model included a steel 

rim with an edge positioned directly at the center to act as pivot point for rolling. The model of the 

tire itself was made up of two layers. The interior layer represented a tire’s inner liner, body plies, 

and the belts that give the tire structural strength.  We approximated these as a 7-mm polyethylene 

strip with a Young’s Modulus of 1.1 GPa and a Poisson’s Ratio of 0.42. The outer layer represented 

the tire tread and sidewall. We modeled this as 18-mm thick rubber with a Young’s Modulus of 

20.6 MPa and a Poisson’s ratio of 0.42. While this simple model only approximated the behavior 

of a tire, it functioned as an effective tool for comparing results between different treatment 

options. We modeled the MEJ beams as steel 1-foot extrusions of the I-beams used on the SR 520 

Bridge. The moisture seal played no structural role in our simulations but was also approximated 

to be rubber like that of the tire. 

3.3.2 Finite Element Model 

To perform finite element analysis (FEA), we used the commercial software ANSYS 

Workbench 2021R1, a simulation suite for various types of solid and fluid analysis. For support 

compression and loading testing, we used ANSYS static structural simulation, with non-linear 

behavior and large deformations enabled. While this method only approximated the forces of a 

high-speed vehicle, it functioned as a useful tool for comparing several potential support 
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geometries. We applied bonded connections to each of the components in the tire and the beam 

assembly, respectively. Between the surface of the tire and the surface of the beams/supports, we 

created frictional contacts with a coefficient of friction of 0.2. We then generated a mesh by using 

ANSY’s automatic mesh generation and a feature resolution of 6. To simulate the event of a car 

tire rolling over a gap in the beams, we broke the analysis into four separate steps.  

1. First, we applied a displacement to one of the beams in the -Y direction to squeeze the 

support and establish the desired gap width and analyze stress in the chevron support 

joints.  

2. Next, we applied a pressure of 35 PSI to the interior of the tire to effectively inflate the 

structure.  

3. Third, we loaded the tire with -4448 N (1000 lbf) in the Z direction to approximate the 

weight of a medium-sized truck with equal force distributed on each tire.  

4. Finally, we applied a remote displacement of 177 mm in the Y direction to roll the tire 

across the surface of the I-beam, into the gap, and onto the surface of the next I-beam.  

To perform post-processing, we used the ANSYS contact tool to measure the pressure between 

the tire and the surface of the second beam over time. We also measured the displacement of the 

support surface and the stresses in the support throughout the simulation. 
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4. Results and Discussion 

On the basis of our current installation of Solution 1 (Single-Layer Support) on the SR 520 

Bridge Modular Expansion Joint, we present our experimental results and physical observations, 

as well as provide suggestions for future implementation.  

4.1 Support Fabrication and Installation 

For on-bridge testing, we ordered support structures cast from BJB Enterprises FP-90A 

urethane by Quickparts, a digital, on-demand manufacturing company. We ordered the chevrons 

in 6-in. segments with extending middle and edge sections to allow them to fit together. Before 

installation we used Loctite 406 instant adhesive to combine four 6-in. sections into 2-ft support 

strips. With proper application, this adhesive creates a strong bond between urethane rubbers; 

however, for future fabrication, support sections could be completely welded together with a more 

aggressive bonding method. To avoid directional biasing and transverse motion of the supports 

with repeated compression (“walking”), we joined the 2-ft sections so that each side included two 

6-in. segments opposing each other (figures 4-1, 4-2).  

 

  
 

 

 

Figure 4-1. Diagram detailing support installation components. 
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Figure 4-2. A) 6-in. sections of urethane cast support structures. B) We glued together four 6-inch 
support sections to create a single support with opposing direction chevrons. 

 
For bridge installation, we first cleaned out a large amount of gravel and debris from the 

MEJ by using scraping tools and an air compressor. Next we cleaned the I-beam surface to glue 

the support to the edge. To secure the supports, we squeezed the sides by hand and slotted them 

into MEJ gaps so that the small ridges on the sides of the supports created mechanical interference 

with the edges of the moisture seal, locking them in place. Significant variation in the gap between 

the beam and the moisture seal made this step somewhat time consuming. To account for these 

variations, we manually trimmed some of the support ridges to create a tight fit. For future 

installation, an improved method of fitting these supports could greatly reduce installation time. 

We glued the support edges to the MEJ beam edges with Bostik 70-03A Elastic Bonding Adhesive.  

Next we used 50-ml 2:1 ratio epoxy mixing guns to inject Smooth-On FlexFoam-iT III into 

each gap in the supports. This is a two-part flexible foam with a roughly 15x expansion ratio that 

is typically used for making soft cushions or props. While this foam acted as a good proof of 

concept for our design, a more durable selection of foam may be preferrable for large-scale 

installation. The method of foam application could also use additional consideration. The epoxy 

guns had far too low capacity and volume for what would be preferrable for large-scale installation. 

This forced us to refill the cartridges many times, adding significant time and difficulty to the 
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installation process. With our application system, we found it very difficult to completely fill every 

support, and many were left with gaps and imperfections. 

To test the feasibility and effectiveness of our design, we installed our experimental 

solution in a single lane on the eastern side of the SR 520 Bridge. Because most vehicles drive in 

the center of the lane, there are clear markings where the two tires of each car most commonly 

strike the edges of the MEJ beams. To reduce installation time and production cost, we installed 

2-ft supports only in these positions where tires commonly strike (Figure 4-3.A). While most cars 

successfully passed over the supports, additional post processing was required to manually select 

cases in which vehicles partially missed the supports.  

Because of several design and roadway inconsistencies, our support installation had to be 

completed over multiple steps. Upon installation, the height of the chevron structures extended 

above the surface of the roadway. Overhead traffic destroyed some of them completely and 

damaged most of the others. Even with the opposing chevron design, many of the supports could 

also be seen to have “walked” transverse to the movement of the bridge, which indicated failure 

of the support-beam adhesion. Additionally, the extra height created an uneven road surface, and 

the supports did little to improve MEJ noise. Despite this failure, we were able to return to the 

bridge and replace some of the destroyed supports, attempt to mend the others, and shave down 

the extra height to create a smooth road surface. In replacing the chevrons care had to be take in 

order not to cut into the seal below. Returning to the bridge and completing these updates instantly 

made an audible difference in MEJ noise and resolved the “walking” that we had observed before.  

Unfortunately, because of this error, many of the joints were structurally compromised 

upon test initialization. We expect this to greatly affect overall structure durability over time. The 

new supports that we installed to replace destroyed sections are the only non-damaged components 

and may offer a better indication of how the structure will survive over time. We performed this 

renovation completely at night, and temperatures were colder than suggested to correctly cure the 

Bostik flexible adhesive. Because this was a short road closure, the glue also had only 

approximately 4 hours to cure instead of the desired 24 hours before traffic began driving over the 

lane. We believe that improper curing of the adhesives will affect the overall performance and 

durability of the structure. 
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Figure 4-3. Installation of MEJ treatment. A, B) Support structure after four weeks of wear. C) 
Cleaning out the expansion joint before installation. 

 
Five days after the supports had been adjusted, we once again returned to the MEJ and 

installed 3-in. by 4-in., 3.5-lb density viscoelastic (memory) foam extrusions into the spaces 

between each I-beam, below the moisture seal. Although this foam was not included in the original 

single-layer design, we wanted to evaluate whether including a viscoelastic dampening material 

between the beams would improve results. We hypothesized that additional foam could possibly 
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reduce either the remaining low-frequency noise from the MEJ beam structure or reduce any 

amplification that could occur from the chamber below the MEJ. We filled every gap in the MEJ 

and spanned a width approximately equal to that of the single lane. To install this foam, we 

squeezed it into the space between the beams, where it expanded to fill the gap and remained 

secured through mechanical interference (Figure 4-4). As shown by the initial results (figures 4-5, 

4-6), the foam did little to reduce the noise of the MEJ. These results could be potentially improved 

by filling the entire span of the bridge, but additional investigation would be required to evaluate 

the potential benefits of this procedure.  

 

 
 

Figure 4-4. Underside of the MEJ with viscoelastic foam strips stuffed into the gaps. 

4.2 Initial Results 

To evaluate the performance of the support structure, we took control audio readings before 

the initial installation. We recorded 90 seconds of audio roadside directly in line with the MEJ and 

90 seconds of audio roadside 160 feet in front of the MEJ. At both distances, the impact of the car 

tires striking the MEJ resulted in two distinct peaks, one as the front tires rolled over the joint and 

the second as the rear tires passed. Each 90-second sample contained many viable test events in 

which a vehicle struck the supported lane of the MEJ with no other vehicles present. Details of 

post processing can be found in section 3.2. After the treatment had been installed, we returned to 

the MEJ roughly one hour after traffic started driving across the bridge to again take measurements. 

From observations, the pitch and the magnitude of the noise emitted from the supported section of 
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the MEJ was a lower frequency and quieter than the unsupported section (SM Video). At a distance 

of 160 feet in front of the joint, the noise from the supported lane became very difficult to discern 

from that of general roadway traffic (SM Video). We measured the overall ESD for both the 

control and the initial results for the support; additionally, we subtracted the background noise of 

roadway traffic directly before each event to show the contrast of the impact noise from the general 

noise of the bridge (figures 4-5, 4-6).  

 

Figure 4-5. Map showing expansion joint and sound measurement locations. 
  

As shown in figures 4-6 and 4-7, a significant spike in energy occurred between 500 Hz 

and 900 Hz for the control testing. These results mirror those presented by the findings in the UW’s 

phase 1 Modular Expansion Joint Noise Mitigation Study14. As humans, we perceive this 

frequency range to be relatively loud in comparison to lower frequency signals, and shifting or 

diminishing this peak has been a primary objective for an effective solution. Both directly beside 

the MEJ and 160 feet in front of the MEJ, we saw significant reductions in broadband RMS, 

especially in the problem frequency region of 500 to 900 Hz. In the full spectrum 0- to 15000-Hz 

frequency range, we saw the most significant differences occur in the 0- to 1000-Hz frequency 
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range. Matching our qualitative observations, the sound recorded directly beside the MEJ changed 

less significantly with the installation of the supports than the sound recorded 160 feet in front of 

the MEJ. Comparing event recordings to background noise, we saw a 56.0 percent reduction in 

broadband RMS directly beside the MEJ and an 89.61 percent reduction in broadband RMS at 160 

feet in front of the MEJ. It should be noted that the peak at the 500 to 900 Hz interval was reduced 

by approximately 10 dB. At a distance farther than 160 feet the effective noise attenuation made 

it difficult to distinguish between general roadway noise and the noise from the supported 

expansion joint. As a result, accurate post processing became very difficult, and we could not 

clearly select events since the other lanes with untreated expansion joints were also open to traffic. 

 

 

Figure 11. Diagram detailing support installation components. 
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Average broadband noise 
reduction: 5.89 dB 

Average percent reduction 
compared to roadway noise: 
89.61 %  

Figure 4-6. Comparison between control and initial results at a distance of 160 feet. 

Average broadband 
noise reduction: 3.64 dB 

Average percent 
reduction compared to 
roadway noise: 56.0 %  

Figure 4-7. Comparison between control and initial results directly beside the MEJ. 

 

4.3 Performance Over Time 

We took measurements at the MEJ pre- and post-support installation, before and after 

inserting additional foam below the moisture seal (five days), and then every two weeks for two 

months. Changing environmental and road conditions existed for each measurement, possibly 
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resulting in some inconsistencies in the data. Over the period of two months (September to 

October), the average span of each gap in the expansion joint increased significantly 

(approximately 1.5 in. to approximately 2.5 in.), and temperature and humidity varied greatly day 

to day. Given simulation results, we expect a widening gap to corelate to an increase in MEJ noise, 

but no physical data exist to validate this assertion. Additionally, roadway traffic played a role in 

both background noise and average vehicle speed (i.e., more traffic tended to correlate to slower 

speeds). To help account for this, we subtracted the background noise from the expansion joint 

noise to give us the overall noise contribution of the impacts (see details in section 3. 

Methodology).  

Comparing the difference between the supported MEJ section and the control allowed us 

to observe general trends in the performance of the MEJ treatment over time. As shown in Figure 

4-8, directly after installation at a distance of 160 feet, the difference between standard roadway 

noise and supported MEJ was less than 1 dB, which is generally considered imperceptible18. 

Throughout the entirety of testing, the difference in sound levels remained below 2 dB, which is 

considered to be barely perceptable18. At these levels, the surrounding neighborhood would 

experience no perceivable difference in noise between the bridge roadway and the expansion joint.  
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Figure 4-8. Comparison between roadway noise and MEJ noise over a two-month period at a 
distance of 160 feet. Error bars represent standard deviation of measurements.  

 

As shown in Figure 4-9, the noise directly beside the MEJ was significantly more 

noticeable but still greatly improved from the original configuration. With no support, the 

difference between MEJ and roadway noise was over 8 dB, which is fairly close to the 10-dB 

threshold that generally denotes double the perceived noise level18,19. Throughout the duration of 

the study, the noise of cars driving over the supported expansion joint increased but remained well 

below the noise of the original control testing.   
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Figure 4-9. Comparison between roadway noise and MEJ noise over a two-month period directly 
beside the MEJ. Error bars represent standard deviation of measurements. 

  
To get a sense for performance over time, we calculated the percentage of audible noise 

reduction. 

% 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
(𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟) − (𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟)

(𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟)
 

Here 𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 is the noise in dB of the control MEJ, 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 is the noise of the road in front of the 

control MEJ, 𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠 is the noise of the supported MEJ, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟 is the noise of road in front of 

the supported MEJ. As seen in figures 4-8,4-9, and 4-10, the MEJ treatment performed best during 

the first two weeks of implementation at both 160 feet and directly beside the MEJ. Between week 

2 and 4 we observed a slight increase in MEJ impact noise. From week 4 to week 8, we measured 

some variation in treatment noise but observed no clear trend in the data. Throughout the two-

month period, noise measurements remained lower than that of the sinus plate at both distances.  
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Figure 4-10. Comparison between untreated MEJ noise and the installed treatment over a two-
month period at a distance of 160 feet. 

 
Approximately four weeks after installation, we closely inspected the supports during a 

scheduled bridge closure. First, we observed the rubber supports to be in roughly the same 

condition as when we initially trimmed their height after installation. Supports that had been 

damaged within the first few days of installation remained in place, but some of the glued 

connections appeared to have failed, and the flexible joints appeared severely compromised. In 

contrast, the replacement supports that had been trimmed flat at the time of installation remained 

in exceptionally good condition. In many of the supports, the foam also experienced significant 

wear. This likely occurred because of a combination of imprecise application of the foam during 

installation and wear of the soft material. The previously damaged supports appeared to show a 

more pronounced loss of foam (Figure 4-11) than the intact replacement joints (Figure 4-3). We 

also noted deposition of large amounts of gravel inside the MEJ gaps since we had cleared out 

debris four weeks earlier (Figure 4-11). While this was clearly apparent in the spaces with no added 

treatment (Figure 4-11), the gaps within supports themselves had virtually no build-up of debris.  

 



32 

 
 

Figure 4-11. Over one month of installation, gravel and debris started to fill up the 
unsupported portion of the joint (left), while we observed no debris in the chevrons themselves. 
While the chevrons remained in good condition, some foam had been pulled from the supports 

after one month of wear (right). 

4.4 Suggestions for Future Implementation 

Future work should consider several design and installation aspects for large-scale 

implementation. First, we conducted this study with convenient fabrication processes and materials 

for rapid prototyping and low run production. While we selected effective support materials for 

testing functionality, more durable options may be available by using another fabrication process 

such as injection molding, which we avoided because of cost, low part counts, and time 

restrictions. To fabricate each 2-ft support section, we glued together four individual 6-in. 

components. While this was strong enough for installation, more permanent methods may exist to 

fuse components. The foam we used was an off-the-shelf, two-part mixture that was in no way 

optimized for extended use in an outdoor environment. For enhanced durability, a more specialized 

foam may be desired. While the chevron supports offer the foam some protection from vehicle 

wear, ideally, the foam would sit slightly shy of the road’s surface, and an additional coating would 

be added to improve weathering and abrasion resistance.  

We performed the one-lane installation of the treatment in approximately two 9-hour 

sessions with two people continuously working. With improved methods, the time required for 

this process could be dramatically reduced. Initially, we spent several hours cleaning debris out 
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the joint, a step that could be performed ahead of time in much less time by using the proper 

equipment. Next, sizing inconsistencies in the interior of the beam gaps between the moisture seal 

and the beam forced us to trim several of the chevron supports by hand to ensure a tight fit. 

Adjusting the support geometry to universally fit in every gap or using a more specialized tool for 

trimming the support would dramatically improve installation time. When gluing the support 

structure to the MEJ beams, we relied on the rebound of the compliant structure to hold the support 

in place as the glue cured. Many of these supports didn’t create adequate pressure to squeeze excess 

glue from the interface, and an additional specialized tool to expand the support might have 

improved adhesion. Properly curing the Bostik flexible adhesive takes a minimum of 24 hours in 

warm, dry weather. Special care should be taken to ensure that weather conditions and installation 

timelines match these requirements. The support structures can be removed from the expansion 

joint by sliding a knife along the glued interface between the joint and the I-beam and pulling them 

out with a pair of pliers. Caution should be exercised to not damage the seal below. 

This study showed that the chevron system is a very effective means of significantly 

decreasing the noise emanating from large expansion joints.  To examine the long-term durability 

on an installed system we propose the following next phase: 

1)  Installation of the chevron system across all westbound lanes of east SR 520 expansion 

joint. 

2) Injection molding of the chevrons to decrease the cost of larger volume fabrication. 

3) Use of high durability material consisting of a mix of natural rubber, synthetic rubbers, 

and antioxidants instead of high strength urethane.  

4) Use of fiber-reinforced, low density foam with a high strength polymer as a protective 

layer. 

5) Inspection for wear and acoustic performance every month for up to one year with 

modifications as needed. 

6) Full installation across all lanes of the east expansion joint of the SR 520 bridge if the 

wear characteristics are judge satisfactory,   

 

4.5 Conclusions 

This study investigated the design and feasibility of noise mitigation strategies for 

installation in modular expansion joints (MEJs), with a focus on Washington state’s SR 520 bridge. 
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The three main sources of noise from the MEJ include resonance of the air within the gaps, 

resonance of the beams, and resonance of the tires. By filling the gaps in the MEJs with a 

supportive zero-Poisson’s ratio material, we can reduce the input signal for each of these noise 

sources simultaneously. We proposed two potential solutions to reduce tire deformation into beam 

gaps and subsequently decrease pressure spikes on tires and beam edges: a single-layer support 

structure, and a multi-layer support structure. We performed both physical testing and simulation 

to evaluate the effectiveness of each solution and selected the single-layer chevron support to be 

the most feasible solution.  

Installation of this treatment in one lane of the SR 520 bridge MEJ proved to be highly 

effective over the two-month test period. At a distance of 160 feet, we consistently measured a 

greater than 4.51-dB broadband reduction in expansion joint noise. This accounts for more than a 

70 percent reduction in additional noise produced by the expansion joint over the background noise 

of vehicles on the flat roadway. Beyond 160 feet the difference in noise between the flat roadway 

and the MEJ became so small that it was difficult to accurately measure.  

If these supports were installed in all expansion joints on the bridge, residents living in the 

area would still hear the general noise of the roadway, but the abrasive sound of vehicles hitting 

the expansion joints would effectively be eliminated.  

While we showed that the chevron system can be an effective solution to the expansion 

joint noise issue, this report outlines further development and testing to extend the durability of 

the treatment. 
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Appendix A. High Speed Testing 

 

A-1. Top support structures. (Left) Chevron design features an S-shaped hinge to reduce internal 
stress. This allows the structure to be fabricated from a stiff material such as nylon. (Right) We 

fabricated the structure from a flexible material such high 90A urethane or thermoplastic polyurethane 
(TPU). 

 
As a car tire rolls over a gap in the road, it affects the edge of the gap, creating a pressure 

spike and a resulting noise. To evaluate the acoustic and dynamic effect of top support structures, 

we built a high speed (60 mph) test set-up to measure pressure on the beam’s leading edges and 

changes in recorded sound. At the widest span, a car tire will only deform roughly 1 cm into the 

gaps between the beams. This allowed us to build a simplified test set-up by gluing ¾-in. steel 

beams to the roadway and driving over them at 60 mph to get a general comparison of noise with 

different top supports.  
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Appendix B. Static Testing Procedures 

B.1 Physical Tests 

To validate our simulations and assess the potential of each multi-layer design, we built a 

static compression test set-up (shown in Figure B-1) with reconfigurable components and tested 

eight different configurations for support deformation and edge pressure. We used Fujifilm 70-

350 psi Prescale pressure paper to determine edge pressure and an IFM diffuse light photoelectric 

distance sensor to measure deformation in the structure. On the physical MEJ, the largest tire 

deformations and subsequent impacts occur when the gap spans a larger distance. We positioned 

the I-beams accordingly to have a 3-in. gap, the maximum MEJ gap width within its normal 

working range.  

We built the approach ramps from wood and performed our compression tests by driving 

a Ford Transit Connect cargo van over the set-up. Additional variation in vehicle type could be 

tested to provide a wider range of results. For this specific test, using a single vehicle enabled us 

to perform side by side comparisons of configurations and select the most effective solution.  

B-1. Compression test set-up. This test set-up matched a 2-foot section of the MEJ and could be 
driven over by a desired vehicle to provide pressure and displacement measurements. 

 
We tested eight separate configurations (shown in Figure B.2.) to compare results for each 

individual support structure and combinations of support structures. 
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B.2. Compression test configurations 1 through 8. These include baseline testing, individual 
component testing, and full structure testing. 

 

For baseline testing, we first performed tests with no support structure and a rigid support 

structure with very little deformation. To create the rigid support, we used layers of ¾-in. oak 
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planking cut to fill the gap. While this gave a good approximation of a flat surface, some 

compression still occurred in the wood, particularly at the interface of each rough surface. Next, 

we tested each of the four support structures individually by combining each with rigid supports 

as the other section of the structure. Inaccuracies in structure fabrication; dirt, gravel, and water on 

the roadway; and limited sensor accuracy all acted as sources of error in the tests.  

To test deformation in the structure, we measured the distance from the lens to a fixed point 

on the surface of the structure by using the diffuse light position sensor and recorded the total 

displacement as a vehicle drove over the set-up. For the unsupported configuration we measured 

a total displacement of 9 mm, and for a quasi-rigid support made from oak we recorded a 

displacement of 0.7 mm. Each of the remaining six support configurations showed a dramatic 

reduction in deformation in comparison to the original gap. Samples 3, 4, 5, and 6 isolated 

individual support structures to give an idea of component-by-component rigidity. These tests 

demonstrated that spring steel lower-support greatly outperformed the urethane lower-support, 

with a total deformation of only 1.1 mm as opposed to 4.1 mm for the urethane version. The top 

supports both had relatively similar deformations, within the margin of error of the position sensor, 

but the plastic top support demonstrated a slightly lower deformation of 3 mm versus 3.6 mm for 

the rubber support. Configurations 7 and 8 tested the deformation of the combined multilayer 

structure, and both provided more than 60 percent reduction in overall deformation into the gap. 

Of these options, configuration 7 (spring steel lower support and rigid plastic upper support) 

offered the most resistance to deformation, showing a 65 percent reduction vertical of tire 

displacement.  

To test the pressure on the leading edge of the I-beam, we used Fujifilm Prescale 70-350 

psi pressure sensor paper, which chemically becomes a more vibrant shade of red under direct 

pressure. This sensing method offers instantaneous feedback and qualitative results but is difficult 

to quantify with a high level of confidence. We performed post processing on sample images to 

color code the results. As shown in Figure B.3., high pressures (350 psi) can be seen as bright 

orange areas, while low pressures (70 psi) show up as dark purple. The support solutions showed 

a dramatic reduction of pressure on the edge of the beam in comparison to the original unsupported 

sample. Some error could be found in these samples, since tiny pressure concentrations such as 

gravel or misalignment in support height also created small areas of high pressure.  
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B.3. Pressure measurements for each test configuration. All supported configurations had noticeably 
lower pressure concentrations at the beam edge. 

B.2 Simulation Results 

Simulations of three test configurations (unsupported, rigid support, metal-plastic chevron 

support structure) are shown in Figure B.4. These results showed trends that were similar to our 

experimental results.  Deformations shown in the simulation results were much lower than those 

observed in physical tests. Factors that may account for these discrepancies include inconsistent 

fabrication, compression in the rough surface to surface connections, and differences in tire size 

and material properties. All test results indicated a significant reduction in pressure on the beam 

edges, leading to a reduction in excitation energy and noise. The support structure simulations 

showed a 69 percent reduction in maximum pressure on the beam and showed only a 30-psi 

pressure increase from the flat, rigid surface simulation.  
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B.4. Pressure and deformation results from finite element simulations of each configuration. Icons 
show the pressure profile as it impacts the beam, with green being maximum pressure, blue being 

average pressure, and red being minimum pressure. The pressure curves (shown in green) show the 
maximum pressure on the I-beams. 
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Appendix C. Full 520 Bridge MEJ Test Results 

C.1 Roadside Test Results 
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 C.2 Test Results at 160 Feet 
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