Washington State

Hydraulics Manual

M 23-03.04
January 2015

Americans with Disabilities Act (ADA) Information

Materials can be made available in an alternate format by emailing the WSDOT Diversity/ADA Affairs Team at wsdotada@wsdot.wa.gov or by calling toll free, 855-362-4ADA (4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

Title VI Notice to the Public

It is Washington State Department of Transportation (WSDOT) policy to ensure no person shall, on the grounds of race, color, national origin, or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who believes his/her Title VI protection has been violated may file a complaint with WSDOT's Office of Equal Opportunity (OEO). For Title VI complaint forms and advice, please contact OEO's Title VI Coordinator at 360-705-7082 or 509-324-6018.

To get the latest information on WSDOT publications, sign up for individual email updates at www.wsdot.wa.gov/publications/manuals.

Washington State Department of Transportation
Hydraulics Office
PO Box 47329
Olympia, WA 98504

Contents

Chapter 1 Design Policy 1-1
1-1 General 1-1
1-2 Responsibility 1-2
1-3 Hydraulic Reports 1-3
1-4 Storm Frequency Policy and Recommended Software/Design Tools 1-8
1-5 Hydraulic Report Review Schedule 1-11
Appendix 1-1 Conversion Table 1-14
Appendix 1-2 Environmental Documentation 1-15
Appendix 1-3 Hydraulic Report Outline. 1-16
Appendix 1-4 Hydraulic Report Checklist 1-17
Chapter 2 Hydrology 2-1
2-1 General Hydrology 2-1
2-2 Selecting a Method 2-2
2-3 Drainage Basin 2-5
2-4 Cold Climate Considerations 2-5
2-4.1 Calculating Snowmelt 2-5
2-4.2 Additional Considerations 2-6
2-5 The Rational Method 2-7
2-5.1 General 2-7
2-5.2 Runoff Coefficients 2-8
2-5.3 Time of Concentration 2-10
2-5.4 Rainfall Intensity 2-13
2-5.5 Rational Formula Example 2-16
2-6 Single-Event Hydrograph Method: Santa Barbara Urban Hydrograph 2-16
2-6.1 Design Storm Hyetograph. 2-17
2-6.2 Runoff Parameters 2-18
2-6.3 Hydrograph Synthesis 2-22
2-6.4 Level Pool Routing 2-23
2-6.5 Hydrograph Summation 2-24
2-7 Continuous Simulation Method (Western Washington Only for Stormwater) 2-24
2-7.1 Modeling Requirements 2-25
2-8 Published Flow Records 2-28
2-9 USGS Regression Equations 2-29
2-10 Flood Reports 2-31
2-11 Mean Annual Runoff 2-32
Appendix 2-1 USGS Streamflow Gage Peak Flow Records 2-33
Appendix 2-2 USGS Regression Equations 2-93
Appendix 2-3 Isopluvial and MAP Web Links and Mean Annual Runoff Data 2-103
Chapter 3 Culvert Design 3-1
3-1 Overview 3-1
3-1.1 Metric Units and English Units. 3-1
3-2 Culvert Design Documentation 3-2
3-2.1 Common Culvert Shapes and Terminology 3-2
3-2.2 Hydraulic Reports 3-3
3-2.3 Required Field Data 3-3
3-2.4 Engineering Analysis 3-5
3-3 Hydraulic Design of Culverts 3-7
3-3.1 Culvert Design Flows 3-8
3-3.1.1 Precast Reinforced Concrete Three Sided Structure 3-9
3-3.1.2 Additional Requirement for Culverts Over 20' 3-10
3-3.1.3 Alignment and Grade 3-10
3-3.1.4 Allowable Grade 3-10
3-3.1.5 Minimum Spacing 3-11
3-3.1.6 Culvert Extension. 3-11
3-3.1.1 Temporary Culverts 3-12
3-3.2 Allowable Headwater 3-12
3-3.2.1 General 3-12
3-3.2.2 Allowable Headwater for Circular and Box Culverts and Pipe Arches 3-13
3-3.2.3 Allowable Headwater for Bottomless Culverts 3-15
3-3.3 Tailwater Conditions. 3-15
3.3.4 Flow Control 3-16
3-3.4.1 Culverts Flowing With Inlet Control 3-16
3-3.4.2 Calculating Headwater for Inlet Control 3-17
3-3.4.4 Calculating Headwater for Outlet Control. 3-26
3-3.4.5 Outlet Control Nomographs 3-28
3-3.5 Velocities in Culverts - General 3-42
3-3.5.1 Calculating Outlet Velocities for Culverts in Inlet Control 3-43
3-3.5.2 Calculating Outlet Velocities for Culverts in Outlet Control 3 3-44
3-3.6 Culvert Hydraulic Calculations Form 3-50
3-3.7 Computer Programs 3-55
3-3.8 Example 3-56
3-4 Culvert End Treatments 3-61
3-4.1 Projecting Ends 3-61
3-4.2 Beveled End Sections 3-62
3-4.3 Flared End Sections 3-63
3-4.4 Headwalls and Slope Collars 3-64
3-4.5 Wingwalls and Aprons 3-65
3-4.6 Improved Inlets 3-66
3-4.7 Energy Dissipators 3-67
3-4.8 Culvert Debris 3-68
3-5 Miscellaneous Culvert Design Considerations 3-72
3-5.1 Multiple Culvert Openings 3-72
3-5.2 Camber 3-73
3-5.5 Angle Points 3-73
3-5.6 Upstream Ponding 3-74
3-5.7 Misc Design Considerations - Siphons 3-75
Chapter 4 Open Channel Flow 4-1
4-1 General 4-1
4-2 Determining Channel Velocities 4-2
4-2.1 Field Measurement 4-3
4-2.2 Manning's Equation 4-4
4-2.2.1 Hand Calculations 4-5
4-2.2.2 Field Slope Measurements 4-8
4-2.2.3 Manning's Equation in Sections 4-9
4-3 Roadside Ditch Design Criteria 4-11
4-4 Critical Depth. 4-11
4-4.1 Example Critical Depth in a Rectangular Channel 4-13
4-4.2 Example Critical Depth in a Triangular Channel 4-13
4-4.3 Example Critical Depth in a Trapezoidal Channel 4-14
4-4.3 Example Critical Depth in a Circular Shaped Channel 4-14
4-5 River Backwater Analysis 4-14
4-6 River Stabilization 4-16
4-6.1 Bank Barbs 4-17
4-6.1.1 Riprap Sizing for Bank Barbs 4-20
4-6.1.2 Riprap Placement for Bank Barbs 4-22
4-6.1.3 Vegetation 4-22
4-6.2 Drop Structures 4-23
4-6.3 Riprap Bank Protection. 4-25
4-6.3.1 Riprap Sizing for Bank Protection 4-26
4-6.3.2 Placement of Riprap Bank Protection 4-29
4-6.3.3 Scour Analysis for Bridges and Three Sided Culverts. 4-30
4-6.4 Engineered Log Jams and Large Woody Debris 4-31
4-7 Downstream Analysis 4-32
4-7.1 Downstream Analysis Reports 4-33
4-7.2 Review of Resources. 4-33
4-7.3 Inspection of Drainage Conveyance System 4-34
4-7.4 Analysis of Off Site Affects 4-34
4-8 Weirs 4-35
4-8.1 Rectangular Weirs 4-36
4-8.2 V-Notch Weirs 4-37
4-8.3 Trapezoidal or Cipoletti Weirs 4-37
Appendix 4-1 Manning's Roughness Coefficients (n) 4-1
Chapter 5 Drainage of Highway Pavements 5-1
5-1 Roadway and Structure Geometrics and Drainage 5-1
5-2 Hydrology 5-2
5-3 Rural Highway Drainage 5-2
5-3.1 Downstream End of Bridge Drainage 5-3
5-3.2 Slotted Drains and Trench Systems 5-3
5-3.3 Drop Inlets 5-4
5-4 Gutter Flow 5-4
5-5 Grate Inlets and Catch Basins 5-6
5-5.1 Inlet Types 5-7
5-5.2 Capacity of Inlets on a Continuous Grade 5-12
5-5.3 Side Flow Interception 5-14
5-5.4 Capacity of Inlets in Sag Locations 5-20
5-6 Hydroplaning and Hydrodynamic Drag. 5-26
Chapter 6 Storm Drains 6-1
6-1 Introduction 6-1
6-2 Design Criteria 6-2
6-3 Data for Hydraulics Report 6-5
6-4 Storm Drain Design - Handheld Calculator Method 6-6
6-4.1 General 6-6
6-4.2 Location 6-6
6-4.3 Discharge 6-6
6-4.4 Drain Design Section 6-9
6-4.5 Drain Profile 6-11
6-4.6 Remarks 6-11
6-5 Storm Drain Design - Computer Analysis 6-11
6-6 Hydraulic Grade Line 6-12
6-6.1 Friction Losses in Pipes 6-14
6-6.2 Junction Entrance and Exit Losses 6-14
6-6.3 Losses From Changes in Direction of Flow 6-15
6-6.4 Losses From Multiple Entering Flows 6-16
6-7 Drywells 6-17
6-8 Pipe Materials for Storm Drains 6-17
6-9 Subsurface Drainage 6-18
Chapter 7 Fish Passage 7-1
7-1 Introduction 7-1
7-2 Designing for Fish Passage 7-1
7-2.1 General 7-1
7-2.2 Types of Structures 7-2
7-2.3 Culvert Design Approach 7-2
7-2. River Training Devices 7-3
Chapter 8 Pipe Classifications and Materials 8-3
8-1 Classifications of Pipe 8-3
8-1.1 Drain Pipe 8-4
8-1.2 Underdrain Pipe 8-4
8-1.3 Culvert Pipe 8-5
8-1.4 Storm Sewer Pipe 8-9
8-1.5 Sanitary Sewer Pipe 8-10
8-2 Pipe Materials 8-11
8-2.1 Concrete Pipe 8-11
8-2.2 Metal Pipe - General 8-13
8-2.3 Thermoplastic Pipe - General 8-16
8-2.4 Ductile Iron Pipe 8-20
8-2.5 Solid Wall HDPE 8-20
8-3 Vacant. 8-20
8-4 Pipe Corrosion Zones and Pipe Alternate Selection 8-20
8-4.1 Corrosion Zone I 8-21
8-4.2 Corrosion Zone II 8-22
8-4.3 Corrosion Zone III 8-23
8-5 Corrosion 8-29
8-5.1 pH 8-29
8-5.2 Resistivity 8-30
8-5.3 Methods for Controlling Corrosion 8-30
8-6 Abrasion 8-32
8-7 Pipe Joints 8-34
8-8 Pipe Anchors 8-35
8-8.1 Thrust Blocks 8-35
8-9 Pipe Rehabilitation and Abandonment. 8-35
8-9.1 Pipe Replacement 8-35
8-9.2 Trenchless Techniques for Pipe Replacement 8-36
8-10 Pipe Design 8-37
8-10.1 Categories of Structural Materials 8-37
8-10.2 Structural Behavior of Flexible Pipes 8-37
8-10.3 Structural Behavior of Rigid Pipes 8-38
8-10.4 Foundations, Bedding, and Backfill 8-39
8-11 Structural Analysis and Fill Height Tables 8-40
8-11.1 Pipe Cover. 8-40
8-11.2 Shallow Cover Installation 8-40
8-11.3 Fill Height Tables 8-42

1-1 General

The Hydraulics Manual M 23-03 provides the guidance for designing hydraulic features related to WSDOT transportation design including: hydrology, culverts, open channel flow, drainage collection and conveyance systems, fish passage, and pipe materials. These hydraulic features are necessary to maintain safe driving conditions and protect the highway against surface and subsurface water. The chapters contained in this manual are based on the Federal Highway Administration's (FHWA) Hydraulic Engineering Circulars (HECs) that can be found at © www.fhwa.dot.gov/bridge/hydpub.htm.

This manual makes frequent references to the Highway Runoff Manual M 31-16 (HRM), which provides the WSDOT requirements for managing stormwater discharges to protect water quality, beneficial uses of the state's waters, and the aquatic environment in general. The intent is that the two manuals are to be used in tandem for complete analysis and design of stormwater facilities for roadway and other transportation infrastructure projects. Projects should also consult the WSDOT Design Manual M 22-01, specifically Section 1210 and for design-build projects the Guidebook for Design-Build Highway Project Development.
In addition to the guidance in this manual, project engineer offices (PEOs) should use good engineering judgment and always keep in mind the legal and ethical obligations of WSDOT concerning hydraulic issues. Drainage facilities must be designed to convey the water across, along, or away from the highway in the most economical, efficient, and safest manner without damaging the highway or adjacent property. Furthermore, care must be taken to ensure that the highway construction does not interfere with or damage any of these facilities.

This chapter of the Hydraulics Manual explains the WSDOT policy regarding hydraulic design and hydraulic reports. In Section 1-2, the roles and responsibilities of both the PEO and Headquarters (HQ) Hydraulics Office are defined. WSDOT has specific documentation requirements for the hydraulic report which are specified in Section 1-3. Each hydraulic feature is designed based on specific design frequencies and in some cases a specific design tool or software. A summary of the design frequency and recommended design tools or software for most hydraulic features contained in this manual is summarized in Section 1-4. Finally, Section 1-5 defines the process for reviewing and approving a hydraulic report.

1-2 Responsibility

The project engineer's office (PEO) is responsible for the preparation of correct and adequate drainage design. Actual design work may be performed in the PEO, by another WSDOT office, or by a private consulting engineer. However, in all cases, it is the project engineer's responsibility to ensure that the design work is completed and that a hydraulic report is prepared as described in Section 1-3 of this manual. In addition, the hydraulic report should follow the review process outlined in Section 1-5. The PEO is also responsible for initiating the application for hydraulic related permits required by various local, state, and federal agencies.

While the region is responsible for the preparation of hydraulic reports and PS\&E for all drainage facilities except bridges, assistance from the HQ Hydraulics Office may be requested for any drainage facility design. The HQ Hydraulics Office offers technical assistance to project engineers, WSDOT consultants, and Highways and Local Programs for the items listed below.

1. Hydraulic design of drainage facilities (culverts, storm drains, stormwater BMPs, siphons, channel changes, etc.).
2. Hydraulic design of structures (culverts, headwalls, fish ladders, etc.).
3. Hydraulic support for bridge scour, bridge foundations, water surface profiles and analysis of floodwaters thru bridges.
4. Analysis of stream bank erosion along roadways and river migration and the design of stabilization counter measures and environmental mitigation.
5. Flood plain studies, flood predictions, and special hydrological analysis (snowmelt estimates, storm frequency predictions, etc.)
6. Analysis of closed drainage basins and unusual or unique drainage conditions.
7. Wind and wave analysis on open water structures.
8. Technical support to Highways and Local Programs for hydraulic or bridge related needs.
9. Providing the Washington State Attorney General's Office with technical assistance on hydraulic issues.
10. Design of large woody debris (LWD) for stream enhancement. If the PEO or the Region Hydraulic Engineer performs the design, a Washington State licensed civil or structural engineer shall affix their stamp to the plans.

The HQ Hydraulics Office takes primary responsibility in the following specialty areas:

1. Ensuring that the information in the WSDOT Hydraulics Manual is accurate and current.
2. Ensuring that the engineering related information in the WSDOT Highway Runoff Manual M 31-16 is accurate and current.
3. Hydraulic analysis of bridges, including hydraulic conveyance, floodplain impacts, deck drainage, and foundation scour.
4. Hydraulic design of all large span corrugated metal culverts.
5. Hydraulic design of large span concrete culverts.
6. Hydraulic design of pumping facilities.
7. River hydraulic and backwater analysis.
8. Maintaining WSDOT Standard Plans M 21-01, the Standard Specifications M 41-10, and General Special Provisions (GSPs) involving drainage related items.
9. Design of water supply and sewage disposal systems for safety rest areas. The project engineer's office is responsible for contacting individual fire districts to collect local standards and forward the information onto HQ Hydraulics.
10. Reviewing and approving Type A hydraulic reports, unless otherwise delegated to the Regional Administrator.
11. Providing the regions with technical assistance on hydraulic issues that are the primary responsibility of the region.
12. Providing basic hydrology and hydraulics training material to the regions. Either regional or HQ personnel can perform the actual training. See the HQ Hydraulics web page for information on course availability at © www.wsdot.wa.gov/design/hydraulics/training.htm.
13. Stream river restoration.
14. The design of engineered \log jams throughout the state, including a monitoring plan to observe installation and collect data.
15. Review and approval of LWD calculations due to the inherent risks and liability.

1-3 Hydraulic Reports

The hydraulic report is intended to serve as a complete documented record containing the engineering justification for all drainage modifications that occur as a result of the project. The primary use of a hydraulic report is to facilitate review of the design and to assist in the preparation of the PS\&E. The writer should approach the hydraulic report from the position of its defense in a court of law. It should be clearly written and show conditions before and after construction.

This section contains specific guidance for developing, submitting, and archiving a hydraulic report.

1-3.1 Hydraulic Report Types

There are four types of hydraulic reports: Specialty Report, Type A, Type B, or a Hydraulic Summary. Figure 1-3 provides guidance for selecting the report type; however the Region Hydraulics Engineer should be consulted for final selection.

Type of Report	Description	Approval		PE Stamp
		Region	HQ	
Specialty ${ }^{1,2}$	Projects with any of the following components: - Culverts greater than 48 inches in diameter ${ }^{3}$ - Bridge - Fish Passage - Bank Protection - River structures (e.g. barbs, ELJ, levees) - Channel realignment/modifications - Any fills in floodplain or floodway - Pump stations		X	X^{5}
A^{1}	Projects with any of the following components: - Over 5,000 sq. ft. of new impervious surface is added - Storm sewer systems that discharge into a stormwater treatment facility	X^{6}		X
$B^{1,4}$	Projects with any of the following components: - Culverts less than or equal to 48 inches in diameter ${ }^{3}$ - Less than or equal to 5,000 sq. ft. of new impervious surface is added - Storm sewer systems with 10 or less hydraulic structures, that don't discharge into a stormwater treatment facility - Paving/Safety Restoration and Preservation Projects	X		X

1. For Design Build Projects, the identified approving Hydraulics Engineer shall be involved in developing the scope and the Request for Proposal (RFP). The identified approving Hydraulics Engineer shall have rejection authority as per the Request for Proposal (RFP) of both conceptual and final design.
2. A Specialty Report may be waived with approval from Headquarters Hydraulics.
3. Type of report also applies to culvert extensions of the size noted.
4. At the Region Hydraulic Engineer's discretion smaller projects may replace a Type B report with a Hydraulic Summary, contact the Region Hydraulic Engineer for an example.
5. PE Stamp shall be either by Headquarters Hydraulics or by a licensed engineer approved by Headquarters Hydraulics.
6. Headquarters review and concurrence is required except where delegation of authority has been granted to the Region. Consult the Region Hydraulic Engineer to determine whether Headquarters review and concurrence is required.

Hydraulic Report Selection Table Figure 1-3

1-3.2 Writing a Hydraulic Report

This section contains guidance for developing a hydraulic report.

- Hydraulic Report Outline - A hydraulic report outline has been developed as a starting point for PEOs and is located in Appendix 1-3. Use of the outline is not mandatory. However, organizing reports in the outline format may expedite the review process. Since some regions have modified the outline to meet specific region needs and or requirements, PEOs should contact their Region Hydraulic Engineer to determine the correct outline before starting a report. Once the relevant outline is selected, it is recommended that PEOs read through the outline and determine which sections are applicable to the project and delete those that are not. Both the region or HQ Hydraulic Offices can be contacted for assistance in preparing a hydraulic report.
- Hydraulic Report Contents - Regardless of whether or not the hydraulic report outline format is followed, the hydraulic report should contain the elements described in the outline and on the hydraulic report Review Checklist, see Appendix 1-4. PEOs should provide a well-organized report such that an engineer with no prior knowledge of the project could read and fully understand the hydraulic/hydrologic design of the project. The report should contain enough information to allow someone else to reproduce the design in its entirety, but at the same time PEOs should be brief and concise, careful not to provide duplicate information that could create confusion.
- Referencing the Hydraulics or Highway Runoff Manual M 31-16 - Copying sections of either the Hydraulics Manual or HRM is discouraged as it only adds additional bulk to the hydraulics report that is not necessary. Instead PEOs should reference the sections used in the design in the written portion of the hydraulics report. If the PEO deviates from either manual, the PEO must clearly state why a deviation was necessary and document all the steps used in the analysis in the written portion of the hydraulics report.
- Deviations to the Hydraulics or Highway Runoff Manual M 31-16 Deviations from either manual require approval prior to submitting a hydraulic report for review. For deviations from the Hydraulics Manual, approval is required by the State Hydraulic Engineer. Requests for a deviations should go through the Region Hydraulic Engineer to the HQ Hydraulics engineering staff. For deviations from the HRM, approval is required by the Demonstrative Approach Team (DAT) using the Engineering Economic Feasibility Checklist (see Appendix 2A of the HRM).
- Design Tools and Software - Whenever possible the design tools and programs described in this manual and in the HRM should be utilized. To determine if software and/or design tools are recommended, PEOs should review Section 1-4 or check the expanded list on the HQ Hydraulics web page at the following link: đ www.wsdot.wa.gov/Design/Hydraulics/ ProgramDownloads.htm. If a PEO wishes to use a design tool or software other than those that are recommended, they must request approval by 10 percent milestone for the hydraulic report, see Appendix 1-4.
- Contract or Scope of Work - Project offices should use caution when referencing the hydraulic report outline in contracts or scope of work for consultants. Never contract or scope a consultant to only finish or complete the outline. The consultant should use the hydraulic report outline to develop the hydraulic report per the Hydraulics Manual and the hydraulic report shall address all of the applicable Minimum Requirements per the Highway Runoff Manual M 31-16. Please contact the Region and/or HQ Hydraulics Engineer to review the contract or scope prior to hiring a consultant.

1-3.3 Hydraulic Report Submittal and Archiving

Hydraulic reports should be submitted to the approving authority as follows:

- Review Copies - PEOs should submit a complete hard copy of the hydraulic report to the appropriate approving authority (region and/or HQ Hydraulics, see Figure 1-3) for review. To ensure the most efficient hydraulic report review, designers should follow Hydraulic Review Process outlined in Section 1-5 and shown in Figure 1-5. Final approval of a hydraulic report is granted once the report complies with both the Hydraulics Manual and Highway Runoff Manual M 31-16 and all reviewer comments are satisfactorily addressed.
- Final Copies - Upon approval, two paper copies and three CD copies of the report, and the original approval letter shall be sent to the offices noted below. CD copies should include the entire contents of the hydraulic report (including the appendices files) in PDF format as well as all program files or electronic design tool files. It is recommended that a summary of the CD contents be included, with each file name and purpose clearly stated.

1. Send one CD and one paper copy of the hydraulic report to the Construction Office for reference during construction.
2. Send one CD and one paper copy to the Region Hydraulic Engineer to be kept in a secure location as the record of copy for 10 years.
3. Send one CD copy of the hydraulic report to the HQ Hydraulics Office. The HQ Hydraulics will retain this copy for at least 10 years.
4. The original approval letter should be archived with the Design Documentation Package (DDP).

The 10-year time line begins after construction is complete. However, WSDOT employees are directed to preserve electronic, paper, and other evidence as soon as they are aware of an incident that may reasonably result in an injury, claim, or legal action involving the department per WSDOT Secretary's Executive Order E 1041 (丹 wwwi.wsdot.wa.gov/docs/OperatingRulesProcedures/1041.pdf). In some instances, this may extend beyond the 10 -year retention time.

1-3.4 Hydraulic Report Revisions and Supplements

At times, a hydraulics report may need to be revised due to various elements within a proposed project. There are two ways to submit a change:

1. Revision - A revision is a correction to the existing report either due to an error or omitted design documentation. The PEO should submit the revision along with a new title page, stamped, and signed by the project engineer with the same date or later as the revision.
2. Supplement - A supplement is a change that was not part of the original scope of work. The same approval process is required as with the original report. However the supplement should be a stand-alone document that references the original report. The supplement should indicate what the existing design was and how the existing design has changed as well as describe why the change was necessary.

Either type of change should be included in a submittal package with the changes clearly documented as well as supporting analysis and data including: any revised plans, calculations, and other updates as warranted to support the change. The package should be submitted to the approving authority following the guidance in Section 1-3.3 and as shown on Figure 1-5.

1-3.5 Hydraulic Reports and Design Build Project

Design build projects present unique challenges and as such PEOs should coordinate the hydraulic design with both the Region and/or HQ Hydraulic Engineer throughout the project. In addition to the guidance in this manual and the Highway Runoff Manual M 31-16, PEOs should also consult the Guidebook for Design-Build Highway Project Development at the following web site:
© www.wsdot.wa.gov/projects/delivery/designbuild/.

1-3.6 Developers and Utility Agreements

Developers, external agencies, utilities, etc., designing stormwater facilities within WSDOT right of way (ROW), shall assume the same responsibility as the PEO and prepare hydraulic reports in compliance with the policy outlined in Chapter 1 of this manual. Additionally, pipes and stormwater treatment features (bioswale, pond, etc.) on WSDOT ROW are considered utility structures. Therefore, anytime such a feature is located on WSDOT ROW, a utility permit will be required. For more information on utility permits, PEOs should consult the Utilities Manual M 22-87, the Agreements Manual M 22-99, and/or the Development Services Manual M 3009.

1-4 Storm Frequency Policy and Recommended Software/Design Tools

Ideally every hydraulic structure would be designed for the largest possible amount of flow that could ever occur. Unfortunately this would require unusually large structures and would add an unjustifiably high cost to the projects; therefore hydraulic structures are analyzed for a specific storm frequency. When selecting a storm frequency for design purposes, consideration is given to the potential degree of damage to the roadway and adjacent property, potential hazard and inconvenience to the public, the number of users on the roadway, and the initial construction cost of the hydraulic structure.
The way in which these factors interrelate can become quite complex. WSDOT policy regarding design storm frequency for typical hydraulic structures has been established so the PEO does not have to perform a risk analysis for each structure on each project. The design storm frequency is referred to in terms of mean recurrence interval (MRI) of precipitation. Figure 1-4 lists the recommended MRIs for design of hydraulic structures. Based on past experience, these will give acceptable results in most cases. Occasionally the cost of damages may be so great, or the level of services using the roadway may be so important, that a higher MRI is appropriate. Good engineering judgment must be used to recognize these instances and the design should be modified accordingly. In high-risk areas a statistical risk analysis (benefit/cost) may be needed to arrive at the most suitable frequency.

MRI is the average number of years between storms of a given intensity. It can also be viewed as the reciprocal of the probability that such an event will occur in any one year. For example, a peak flow having a 25 -year recurrence interval has a 4 percent ($1 / 25$) probability of being equaled or exceeded in any future year. A peak flow having a 2 -year recurrence interval has a 50 percent ($1 / 2$) probability of being equaled or exceeded in any future year. The greater the MRI, the lower the probability that the event could occur in any given year.
It is important to keep in mind that MRI does not indicate that events occur on a time schedule. MRI cannot be used to predict time of occurrence. Each event is independent of all others, so the chance that a 25 -year peak flow will occur in any year given remains the same regardless of what flows occurred last year. The correct way to view MRI is that it predicts the average occurrence of events over an extended period of time. For example, a 25 -year peak discharge is expected to be equaled or exceeded 4 times in 100 years.
Figure 1-4 also lists hydrology methods and recommended software and design tools. A more detailed discussion of the hydrology methods can be found in Chapter 2. Copies of the software or design tools can be found on the HQ Hydraulics web page at the following link:
© www.wsdot.wa.gov/Design/Hydraulics/ProgramDownloads.htm

Type of Structure	$\begin{gathered} \text { MRI } \\ \text { (Years) }{ }^{1} \end{gathered}$	Hydrology Method	Recommended Design Tools and Software ${ }^{4}$
Gutters	10	Rational	Inlet Spreadsheet
Storm Drain Inlets - On longitudinal slope - Vertical curve sag	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	Rational Rational	Inlet Spreadsheet Sag Spreadsheet
Storm Drains - Laterals - Trunk lines	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	SBUH/SCS	StormShed or Storm Drain Spreadsheet ${ }^{5}$
Ditches ${ }^{2}$	10	SBUH/SCS	StormShed
Standard Culverts - Design for HW/D ratio ${ }^{3}$ - Check for high flow damage	$\begin{gathered} 25 \\ 100 \end{gathered}$	Published flow records, Flood reports (FIS), USGS Regression, or Rational Method	$\begin{gathered} \text { HY-8 } \\ \text { or } \\ \text { HEC-RAS } \end{gathered}$
Bottomless Culverts - Design for HW depth ${ }^{3}$	100	Same as standard culverts (except rational method)	$\begin{gathered} \text { HY-8 } \\ \text { or } \\ \text { HEC-RAS } \end{gathered}$
Bridges - Design for flow passage and foundation scour - Check for high flow damage	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	Same as standard culverts (except rational method)	$\begin{aligned} & \text { HEC-RAS (1D) } \\ & \text { or } \\ & \text { FESWMS (2D) } \end{aligned}$
Stormwater Best Management Practices (BMPs)		See HRM	MGSFlood WWA StormShed EWA

${ }^{1}$ See Appendix 4C of HRM for further guidance on selecting design storms.
${ }^{2}$ More design guidance for roadside ditches can be found in Section 4-3.
${ }^{3}$ For temporary culvert design see Section 3-3.1.1.
${ }^{4}$ If a different method or software is selected other than those noted, the reason for not using the standard WSDOT method should be explained and approved as part of the 10 percent submittal. The following web link contains a detailed description of all current programs and design tools recommended by WSDOT.
(脃 www.wsdot.wa.gov/Design/Hydraulics/ProgramDownloads.htm)
${ }^{5}$ Must obtain prior approval from Region Hydraulic Engineer in order to use this method for designing storm drains.

Design Frequency for Hydraulic Structures

Figure 1-4

1-5 Hydraulic Report Review Schedule

All hydraulic reports developed for WSDOT must be reviewed and approved by the State Hydraulic Engineer prior to the project advertisement date. The State Hydraulic Engineer has delegated approving authority to all HQ Hydraulic Engineers and to some Regional Administrators. Depending on the region, some hydraulic reports require two official reviews; one by the Region Hydraulic Engineer and one by HQ Hydraulics. PEOs should contact the Region Hydraulic Engineer to verify proper the region review process.

To help facilitate an efficient design and review process, a hydraulic report review process has been developed. The review will consist of several checkpoints or milestones of the design as it is being developed, followed by an complete review of the report. The purpose of the milestones is to ensure communication between the PEO, region and/or HQ Hydraulics, as well as other internal and/or external stakeholders during the hydraulic design. Each prescribed milestones is considered complete when the corresponding checklist (see Appendix 1-4) is completed, along with deliverables, and submitted to the region hydraulic reviewer(s). For milestones 0 through 70 percent, any comments by the Region Hydraulic Engineers, unless otherwise indicated, should be addressed by the next milestone. The process is illustrated in Figure 1-5 and each milestone is further described below.

- 0 Percent - Define Project - Prior to starting the design, information regarding the project definition should be collected and all stakeholders for the hydraulic design should be identified. Additionally any specialty design should be identified and HQ Hydraulics contacted for design schedules and requests as appropriate.
- 10 Percent - Approved Hydraulic Review Schedule - The goal of this milestone is to meet with all the stakeholders (identified at 0 percent), collect preliminary site data, identify design tools, and develop an approved hydraulic report review schedule through the project management process (PMP).
- 25 Percent - Complete Design Planning Checklist - At the completion of this milestone the PEO will have developed a plan regarding what hydraulic design work will be done as part of the project. Work completed at this milestone includes: TDA delineation(s), determination of the minimum requirements, develop a list of potential BMPs, any deviations and/or other agreements will also be acknowledged, verification of existing conditions completed, geotechnical testing, and ROW needs identified.
- 40 Percent - Develop a Conceptual Design - Once the PEOs have planned the design, they should be able to conceptually develop a hydraulic design that will include: type, size, and location for each hydraulic feature. Any conflicts with utilities should be identified and any geotechnical testing and/or ROW needs should be finalized. The conceptual design should also be reviewed with the stake holders.
- 70 Percent - Design Completed - At this milestone, the design of all the hydraulic features on the project should be completed. Calculations, draft plan sheets, and an outline hydraulic report should be submitted for review. Any deviations from the HRM or HM should be submitted for approval.
- 90 Percent - Hydraulic Report Approved by Region - A draft copy of the entire hydraulic report (as listed on the hydraulic report outline) should be submitted to reviewer. The hydraulic report should be submitted with a memo from the PE or their assistant stating they have reviewed the report and believe the report meets the project objectives and is ready for final review.
- 95 Percent - HQ Hydraulics Approval - If needed.
- 100 Percent - Hydraulic Report Archived - The reviewer provides a final approval letter and the PEO follows the guidelines for archiving and submitting a final report as outlined in this chapter.

1-5.1 Milestones and Scheduling

WSDOT has developed the Project Management and Reporting System (PMRS) to track and manage projects. Project Delivery Information System (PDIS) utilizes a master deliverables list (MDL) to identify major elements that occur during most projects. The MDL is intended to be a starting point for creating a work breakdown structure (WBS) and identifies specific offices the PEO should communicate with during the development of the project schedule. The current MDL identifies three options for hydraulics:

1. Type A Report
2. Type B Report
3. Hydraulic Summary
4. Specialty Design (see Section 1-2 of Hydraulics Manual)

Regardless of the type of report, the milestones outlined above apply. At the 10 percent milestone all projects with hydraulic features should develop an approved hydraulic schedule. At a minimum the schedule should include the milestones with agreed upon dates by the project engineer's office, region Hydraulics, and HQ Hydraulics. Figure 1-6 should be used at as starting place. For Primavera users, a template which includes the milestones is available on the HQ Hydraulics web page. (\bigoplus www.wsdot.wa.gov/Design/Hydraulics/default.htm)

\%	Milestone	Project Alignment	Estimated Task Durations ${ }^{1}$	Date of Completion
0\%	Define project	Project definition complete MDL \#320	TBD	
10\%	Develop approved schedule		TBD	
25\%	Design planning checklist complete	$\begin{gathered} \text { Design approved } \\ \text { MDL \#1685 } \\ \hline \end{gathered}$	TBD	
40\%	Conceptual design complete	Complete prior to starting design	TBD	
70\%	Design complete		TBD Once design is completed, allow four weeks for region review and comment.	
90\%	Draft hydraulic report submitted for approval		Estimate six weeks for PEO to write and compile report contents. Once report is completed, allow eight weeks for region review, comments, and resolution of comments by PEO.	
95\%	Region review completed, hydraulic report submitted to HQ Hydraulic for review	Complete prior to PS\&E approval	Once submitted to HQ hydraulics, allow four weeks for review, comment, and resolution of comments by PEO.	
	Revisions and supplements	Complete prior to hydraulic report archive	TBD	
100\%	Hydraulic report archived	Complete prior to project design approval	TBD	

${ }^{1}$ Allow additional time for projects submitted around major holidays.
Hydraulic Report Review Schedule
Figure 1-6

English to Metric Conversions		English	English Conversions	Metric to	Metric Conversions
Length					
1 inch 1 foot 1 mile 1 yard	$\begin{aligned} & =25.4 \text { millimeters } \\ & =0.3048 \text { meters } \\ & =1.609 \text { kilometers } \\ & =0.914 \text { meters } \end{aligned}$	1 mile 1 yard	$\begin{aligned} & =5,280 \text { feet } \\ & =3 \text { feet } \end{aligned}$	1 centimeter 1 meter 1 kilometer	$\begin{aligned} & =10 \text { millimeters } \\ & =100 \text { centimeters } \\ & =100 \text { meters } \end{aligned}$
Area					
1 square inches 1 square feet 1 acres 1 square miles	$=645.16$ sq. millimeters $=0.093 \mathrm{sq}$. meters $=0.4047$ hectares $=2.59$ square kilometers	$\begin{array}{\|l} \hline 1 \text { acre (acre ft) } \\ 1 \text { sq. mile } \\ 1 \text { sq. mile } \end{array}$	$\begin{aligned} & =43,560 \text { sq. feet } \\ & =640 \text { acres } \\ & =1 \text { section of land } \end{aligned}$	1 sq. centimeter 1 sq. meter 1 hectare 1 square kilometer	$\begin{aligned} & =100 \mathrm{sq} \cdot \text { millimeters } \\ & =10000 \mathrm{sq} \cdot \text { centimeters } \\ & =10,000 \mathrm{sq} \cdot \text { meters } \\ & =1000000 \mathrm{sq} \cdot \text { meters } \end{aligned}$
Volume					
1 ounce 1 gallon 1 cubic foot 1 acre-foot	$\begin{aligned} & =29.57 \text { milliliters } \\ & =3.785 \text { liters } \\ & =0.0283 \text { cubic meters } \\ & =1,233.6 \text { cubic meters } \end{aligned}$	1 cubic foot 1 acre-foot	$=7.48$ gallons $=43,560$ cubic feet	1 cubic centimeter 1 cubic meter 1 cubic meter	$\begin{aligned} & =1000 \text { cubic millimeters } \\ & =1000000 \text { cubic centimeters } \\ & =1000 \text { liters } \end{aligned}$
Flowing Water Rates					
$\begin{aligned} \hline 1 \text { cubic foot } / \text { second }= & 0.0283 \text { cubic meters/ } \\ & \text { second } \\ 1 \text { cubic foot } / \text { second } & =28.32 \text { liters } / \text { second } \end{aligned}$		$\begin{array}{\|l\|} \hline 1 \text { cubic foot/second }=448.83 \text { gallons } / \text { minute } \\ 1 \text { cubic foot/second }=0.646 \text { million gal./day } \\ 1 \text { cubic foot/second }=1.984 \text { acre-feet per day } \\ \hline \end{array}$			
Pressure					
1 pound force 1 pound force/sq.in 1 foot of water 1 atmosphere	$=4.45$ Newtons $=6.89$ kilopascals $=2.988$ Kilopascals $=101.4$ Kilopascals	1 foot of water 1 foot of water 1 atmosphere 1 atmosphere	$=0.433$ pounds/square in. $=62.4$ pounds/square ft. $=14.70$ pounds/square in. = 33.94 feet of water		
Mass					
1 ounces 1 pounds	$\begin{aligned} & =28.35 \text { grams } \\ & =0.454 \text { kilograms } \end{aligned}$	1 ton	= 2000 pounds	1 kilogram 1 tonne	$\begin{aligned} & =1000 \text { grams } \\ & =1000 \text { kilograms } \end{aligned}$
Temperature					
${ }^{\circ} \mathrm{F}$	$=1.8{ }^{* \circ} \mathrm{C}+32$		N/A		N/A

© www.wsdot.wa.gov/NR/rdonlyres/BF1571B9-A814-4E50-B3C2F199BEA9A3B3/0/HROutline.pdf

Appendix 1-4

Hydraulic Report Checklist
$龴^{\bullet}$ www.wsdot.wa.gov/Design/Hydraulics/default.htm

2-1 General Hydrology

The Washington State Department of Transportation (WSDOT) Headquarters (HQ) Hydraulics Office uses several methods for determining runoff rates and/or volumes. Experience has shown these methods to be accurate, convenient, and economical. The following methods will be discussed in detail in subsequent sections of this chapter:

1. The Rational Method
2. The Santa Barbara Urban Hydrograph (SBUH) Method
3. Continuous Simulation Method (western Washington for stormwater design)
4. Published Flow Records
5. United States Geological Survey (USGS) Regression Equations
6. Flood Reports

Two other methods, documented testimony and high water mark observations, may be used as back-up material to confirm the results of the above statistical and empirical methods. Where calculated results vary from on-site observations, further investigation may be required.

7. Documented Testimony

Documented testimony of long-time residents should also be given serious consideration by the designer. The engineer must be aware of any bias that testifying residents may have. Independent calculations should be made to verify this type of testimony. The information that may be furnished by local residents of the area should include, but not be limited to the following:
a. Dates of past floods.
b. High water marks.
c. Amount of drift.
d. Any changes in the river channel, which may be occurring (i.e., stability of streambed, is channel widening or meandering).
e. Estimated velocity.
f. Description of flooding characteristics between normal flow to flood stage.

8. High Water Mark Observations

Sometimes the past flood stage from a drainage area may be determined by observing ordinary high water marks (OHWM) on existing structures or on the bank of a stream or ditch. The Region Biologist can assist in determining the OHWM if needed. These marks along with other data may be used to determine the discharge by methods discussed in the Open Channel Flow chapter or the Culverts chapter of this manual.

Additional hydrologic procedures are available including complex computer models, which can give the designer accurate flood predictions. However, these methods, which require costly field data and large amounts of data preparation and calculation time, can rarely be justified for a single hydraulic structure. The HQ Hydraulics Office should be contacted before a procedure not listed previously is used in a hydrologic analysis.

For the sake of simplicity and uniformity, the HQ Hydraulics Office will normally require the use of one of the first six of the eight methods listed previously. Exceptions will be permitted if adequate justification is provided and approved by the State Hydraulic Engineer.

2-2 Selecting a Method

The first step in performing a hydrologic analysis is to determine which method is most appropriate. The following briefly describes each method that can be used to determine runoff rates and/or volumes. Figure 2-2.1 provides a summary table for quick comparison. Subsequent sections in this chapter provide a more detailed description of each method.

1. Rational Method - This method is used when peak discharges for small basins must be determined. It is a fairly simple and accurate method especially when the basin is primarily impervious. The rational method is appropriate for culvert design, pavement drainage design, storm drain design, and some stormwater facility designs in eastern Washington.
2. SBUH Method - This method is used when peak discharges and runoff volumes for small basins must be determined. This method is not complicated but requires a computer due to its computationally intensive nature. The SBUH method can be used for many stormwater facility designs in eastern Washington and can also be used for culvert design, pavement drainage design, and storm drain design through the entire state.
3. Continuous Simulation Method - The Continuous Simulation method captures the hydrologic effects of back to back storms more common in western Washington. This method uses a HSPF routine for computing runoff from western Washington extended precipitation time series or precipitation stations on pervious and impervious land areas. WSDOT continuous simulation hydrologic model MGSFlood is the recommended software product to use for calculating runoff treatment rates and volumes when designing WSDOT stormwater facilities. MGSFlood is not an appropriate model for calculating flow in fish passage culvert design. Consult Chapter 7 of this manual for a list of acceptable models.
4. Published Flow Records - This method is used when peak discharges for large basins must be determined. This is more of a collection of data rather than a predictive analysis like the other methods listed. Some agencies (primarily the USGS) gather streamflow data on a regular basis. This collected data can be used to predict flood flows for the river and is typically more accurate than calculated flows. Published flow records are most appropriate for culvert and bridge design.
5. USGS Regression Equations - This method is used when peak discharges for medium to large basins must be determined. It is a set of regression equations that were developed using data from streamflow gaging stations. The regression equations are very simple to use but lack the accuracy of published flow records. USGS regression equations are appropriate for culvert and bridge design.
6. Flood Reports - This method is used when peak discharges for medium to large basins must be determined. It is basically using results from an analysis that has been conducted by another agency. Often these values are very accurate since they were developed from an in-depth analysis. Flood report data are appropriate for culvert and bridge design.

Method	Assumptions	Data Needs
Rational	- Small catchments (<1000 acres) - Time of concentration <1 hour - Storm duration > or = concentration time - Rainfall uniformly distributed in time and space - Runoff is primarily overland flow - Negligible channel storage	Time of concentration (min) Drainage area (acreage) Runoff coefficient (C values) Rainfall intensity (use m,n values in/hr)
SBUH	- Rainfall uniformly distributed in time and space - Runoff is based on surface flow - Small to medium basin (up to 1,000 acres) - Urban type area (pavement usually suffices) Regional Storms (Eastern Washington) ${ }^{1}$ - Short duration storm for stormwater conveyance - Long durations storm for stormwater volume Type 1A Storm (Western Washington) ${ }^{1}$ (stormwater conveyance)	Curve number (CN values) Drainage area (acreage) Precipitation values (Isopluvials) Use software similar to StormSHED
Continuous Model (Western Washington)	- HSPF routine for stormwater best management practices including detention and infiltration ponds, vegetated filter strips, and bioswales - Medium size basin (<320 acres) - Elevations below 1500 feet	Use MGSFlood software Drainage basin area (acreage) Land cover (impervious, grass) Soils (outwash, till, wetland) Climatic region (MAP)
Published Flow Record	- Midsized and large catchments with stream gage data - Appropriate station and/or generalized skew coefficient relationship applied	10 or more years of gaged flood records (A list of gages are published in Hydraulics Manual.)
USGS Regional Regression 2001	- Appropriate for culvert and bridge design - Midsized and large catchments - Simple but lack accuracy of flow records	Regional Equations 2001 Annual precipitation (inches) Drainage area (square miles) (National Flood Frequency (NFF) or Stream Stats software can be used)
Flood Reports	- Appropriate for culvert and bridge design - Midsized and large watershed - Often very accurate, but check with agency	Available from FEMA
Basin Transfer of Gage Data With USGS Equations	- Similar hydrologic characteristics - Channel storage	Discharge and area for gaged watershed Area for ungaged watershed

${ }^{1}$ Chapter 4 of the Highway Runoff Manual provides detailed guidance for design storms.

Summary of Methods for Estimating Runoff Rates and/or Volumes
 Figure 2-2.1

2-3 Drainage Basin

The size of the drainage basin is one of the most important parameters regardless of which method of hydrologic analysis is used. To determine the basin area, select the best available topographic map or maps, which cover the entire area contributing surface runoff to the point of interest. Outline the area on the map or maps and determine the size in square meters, acres, or square miles (as appropriate for the specific equations), either by scaling or by using a planimeter. Sometimes drainage basins are small enough that they fit entirely on the CADD drawings for the project. In these cases the basin can be digitized on the CADD drawing and calculated by the computer. Any areas within the basin that are known to be non-contributing to surface runoff should be subtracted from the total drainage area.

The USGS has published two open-file reports titled, Drainage Area Data for Western Washington and Drainage Area Data for Eastern Washington. Copies of these reports can be obtained from the HQ Hydraulics Office and the Region Hydraulics Engineer. These reports list drainage areas for all streams in Washington where discharge measurements have been made. Drainage areas are also given for many other sites such as highway crossings, major stream confluences, and at the mouths of significant streams. These publications list a total of over 5,000 drainage areas and are a valuable time saver to the designer. The sites listed in these publications are usually medium sized and larger drainage basin areas. Small local drainage areas need to be determined from topographic maps as outlined above.

2-4 Cold Climate Considerations

Snowmelt and rain-on-snow is a complicated process and in some areas can result in greater rates of runoff. There are two parts to this section: the first part focuses on calculating the impacts of snowmelt and the second section provides additional considerations for designers when evaluating the impacts of snowmelt in a project location.

2-4.1 Calculating Snowmelt

The following general guidance was developed for urban areas; however, it can be used in rural areas. This method should be added to the 100 -year 24-hour precipitation when using the single event model to account for snowmelt. No additional amounts need to be added to precipitation when designing for conveyance and other hydraulic calculations.

When an area is evaluated for snow impacts the designer should: apply the method described in this section; consult the Region Hydraulics Engineer, the project maintenance office, the project engineer, and finally historical data. Then in the hydraulics report, the designer should describe in detail what value (if any) was determined to most accurately represent snowmelt at a project location.

The first question designers should consider is whether or not cold climate effects will impact a project. In particular, designers should check the snow record to determine the maximum monthly average snow depths for the project. Snow depths can be found at the following website or through contacting the Region Hydraulics Engineer or Headquarter Hydraulics Office at www.wrcc.dri.edu/summary/climsmwa.html.

The following equation uses a factor of 5 developed from the energy budget equation developed by the U.S. Army Corps of Engineers (USACE) and available snow for eastern Washington cities to convert depth to snow water equivalent. This amount should be added to the 100 -year 24 -hour precipitation value when designing for flood conditions for rain-on-snow or snowmelt. The equation below should only be applied when the average snow depth within the month at a project location meets or exceeds 2 inches/day.

$$
\text { Snow Water Equivalent }=\frac{\text { Average Snow Depth }(\text { max. month }(\mathrm{in} / \text { day }))}{5}
$$

The snow water equivalent should not be greater than $1.5 \mathrm{in} /$ day.

2-4.2 Additional Considerations

Regardless of whether or not snowmelt will impact a project site, designers need to also consider the following important issues to provide adequate road drainage and prevent flood damage to downstream properties.

1. Roadside Drainage - During the design phase, consideration should be given to how roadside snow will accumulate and possibly block inlets and other flow paths for water present during the thawing cycle. If it is determined that inlets could be blocked by the accumulation of plowed snow, consideration should be given to an alternate course of travel for runoff. This will help to prevent the water ponding that sometimes occurs in certain areas due to snowmelt and rain not having an open area in which to drain.
2. Retention Ponds - When retention ponds are located near the roadway, the emergency spillway should be located outside of any snow storage areas that could block overflow passage or an alternative flow route should be designated.
3. Frozen Ground - Frozen ground coupled with snowmelt or rain-on-snow can cause unusually adverse conditions. These combined sources of runoff are generally reflected in the USGS regression equations as well as in the historic gauge records. No corrections or adjustments typically need to be made to these hydrology methods for frozen ground or snowmelt. For smaller basins, the SBUH and Rational methods are typically used to determine peak volume and peak runoff rates. The CN value for the SBUH
method, and the runoff coefficient for the Rational method do not need to be increased to account for frozen ground in snowy or frozen areas as consideration has been given to this in the normal precipitation amounts and in deriving the snowmelt equation.

2-5 The Rational Method

2-5.1 General

The Rational method is used to predict peak flows for small drainage areas, which can be either natural or developed. The Rational method can be used for culvert design, pavement drainage design, storm drain design, and some eastern Washington stormwater facility design. The greatest accuracy is obtained for areas smaller than 100 acres (40 hectares) and for developed conditions with large areas of impervious surface (e.g., pavement, roof tops). Basins up to 1,000 acres (400 hectares) may be evaluated using the rational formula; however, results for large basins often do not properly account for effects of infiltration and thus are less accurate. Designers should never perform a Rational method analysis on a basin that is larger than the lower limit specified for the USGS regression equations since the USGS regression equations will yield a more accurate flow prediction for that size of basin.

The formula for the Rational method is:

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{CIA}}{\mathrm{~K}_{\mathrm{c}}} \tag{2-1}
\end{equation*}
$$

Where:
Q = runoff in cubic feet per second (cubic meters per second) C = runoff coefficient in dimensionless units
I = rainfall intensity in inches per hour (millimeters per hour)
$\mathrm{A}=$ drainage area in acres (hectares)
$\mathrm{K}_{\mathrm{c}}=$ conversion factor of 1 for English (360 for Metric units)
When several subareas within a drainage basin have different runoff coefficients, the Rational formula can be modified as follows:

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{I} \mathrm{\Sigma CA}}{\mathrm{~K}_{\mathrm{c}}} \tag{2-1a}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Where: } \\
& \qquad \Sigma C A=C_{1} \times A_{1}+C_{2} \times A_{2}+\ldots C_{n} \times A_{n}
\end{aligned}
$$

Hydrologic information calculated by the Rational method should be submitted on DOT Form 235-009 (see Figure 2-5.1). This format contains all the required input information as well as the resulting discharge. The description of each area should be identified by name or stationing so that the reviewer may easily locate each area.

2-5.2 Runoff Coefficients

The runoff coefficient "C" represents the percentage of rainfall that becomes runoff. The Rational method implies that this ratio is fixed for a given drainage basin. In reality, the coefficient may vary with respect to prior wetting and seasonal conditions. The use of an average coefficient for various surface types is quite common and it is assumed to stay constant through the duration of the rainstorm.

When considering frozen ground, designers should review Section 2-4.2 number 3 of this manual.

In a high growth rate area, runoff factors should be projected that will be characteristic of developed conditions 20 years after construction of the project. Even though local stormwater practices (where they exist) may reduce potential increases in runoff, prudent engineering should still make allowances for predictable growth patterns.

The coefficients in Figure 2-5.2 are applicable for peak storms of 10-year frequency. Less frequent, higher intensity storms will require the use of higher coefficients because infiltration and other losses have a proportionally smaller effect on runoff. Generally, when designing for a 25 -year frequency, the coefficient should be increased by 10 percent; when designing for a 50 -year frequency, the coefficient should be increased by 20 percent; and when designing for a 100-year frequency, the coefficient should be increased by 25 percent. The runoff coefficient should not be increased above 0.95 , unless approved by the Regional Hydraulics Engineer. Higher values may be appropriate for steeply sloped areas and/or longer return periods, because in these cases infiltration and other losses have a proportionally smaller effect on runoff.

SR	Project	
Calculated By	Date	

EQUATIONS	LEGEND			
$\mathrm{T}_{\mathrm{c}}=\frac{\mathrm{L}}{\mathrm{K} \sqrt{\mathrm{S}}}=\frac{\mathrm{L}^{1.5}}{\mathrm{~K} \sqrt{\Delta \mathrm{H}}}$	$\mathrm{Q}=$ Flow	$\mathrm{L}=$ Length of drainage basin	T_{c}	$=$
$\mathrm{m} \& \mathrm{n}$	$=$	Time of concentration		
$\mathrm{I}=\frac{\mathrm{m}}{\left(\mathrm{T}_{\mathrm{C}}\right)^{\mathrm{n}}}$	$\mathrm{S}=$ Average slope coefficients			
$\mathrm{Q}=\frac{\mathrm{CIA}}{\mathrm{K}_{\mathrm{C}}}$	$\mathrm{K}=$ Ground cover coefficient	C	$=$	Runoff coefficient
	$\Delta \mathrm{H}=$ Elevation change of basin	A	$=$	Drainage area

Description Of Area	MRI	\mathbf{L}	$\Delta \mathbf{H}$	\mathbf{S}	\mathbf{K}	$\mathbf{T}_{\mathbf{c}}$	Rainfall Coeff	$\mathbf{K}_{\mathbf{c}}$	\mathbf{C}	\mathbf{I}	\mathbf{A}	\mathbf{Q}	

Hydrology by the Rational Method

 Figure 2-5.1Below is the web link for electronic spreadsheet (WSDOT Form 235-009):
© www.wsdot.wa.gov/publications/fulltext/Hydraulics/programs/hydrology. xls

Type of Cover	Flat	Rolling $\mathbf{2 \% - 1 0 \%}$	Hilly Over 10\%
Pavement and roofs	0.90	0.90	0.90
Earth shoulders	0.50	0.50	0.50
Drives and walks	0.75	0.80	0.85
Gravel pavement	0.50	0.55	0.60
City business areas	0.80	0.85	0.85
Suburban residential	0.25	0.35	0.40
Single family residential	0.30	0.40	0.50
Multi units, detached	0.60	0.50	0.60
Multi units, attached	0.05	0.65	0.70
Lawns, very sandy soil	0.10	0.07	0.10
Lawns, sandy soil	0.17	0.15	0.20
Lawns, heavy soil	0.25	0.25	0.35
Grass shoulders	0.60	0.60	0.25
Side slopes, earth	0.30	0.30	0.60
Side slopes, turf	0.25	0.30	0.30
Median areas, turf	0.50	0.55	0.30
Cultivated land, clay and loam	0.25	0.30	0.60
Cultivated land, sand and gravel	0.50	0.70	0.35
Industrial areas, light	0.60	0.80	0.90
Industrial areas, heavy	0.10	0.15	0.25
Parks and cemeteries	0.20	0.25	0.30
Playgrounds	0.10	0.15	0.20
Woodland and forests	0.25	0.30	0.35
Meadows and pasture land	0.40	0.45	0.50
Pasture with frozen ground	0.10	0.20	0.30
Unimproved areas			

Runoff Coefficients for the Rational Method - 10-Year Return Frequency

 Figure 2-5.2
2-5.3 Time of Concentration

Time of concentration $\left(\mathrm{T}_{\mathrm{c}}\right)$ is defined as the time for runoff to travel from the hydraulically most distant point of the watershed to a point of interest in the watershed. Travel time $\left(T_{t}\right)$ is the time it takes water to travel from one location to another in a watershed. Travel time $\left(\mathrm{T}_{\mathrm{t}}\right)$ is a component of time of concentration $\left(\mathrm{T}_{\mathrm{c}}\right)$, which is computed by summing all the travel times for consecutive components of the drainage flow path. This concept assumes that rainfall is applied at a constant rate over a drainage basin which would eventually produce a constant peak rate of runoff.

Actual precipitation does not fall at a constant rate. A precipitation event will begin with small rainfall intensity then, sometimes very quickly, build to peak intensity and eventually taper down to no rainfall. Because rainfall intensity is variable, the time of concentration is included in the Rational method so that the designer can determine the proper rainfall intensity to apply across the basin. The intensity that should be used for design purposes is the highest intensity that will occur with the entire basin contributing flow to the location where the designer is interested in knowing the flow rate. It is important to note that this may be a much lower intensity than the absolute maximum intensity. The reason is that it often takes several minutes before the entire basin is contributing flow but the absolute maximum intensity lasts for a much shorter time so the rainfall intensity that creates the greatest runoff is less than the maximum by the time the entire basin is contributing flow.

Most drainage basins will consist of different types of ground covers and conveyance systems that flow must pass over or through. These are referred to as flow segments. It is common for a basin to have flow segments that are overland flow and flow segments that are open channel flow. Urban drainage basins often have flow segments that flow through a storm drainpipe in addition to the other two types. A travel time (the amount of time required for flow to move through a flow segment) must be computed for each flow segment. The time of concentration is equal to the sum of all the flow segment travel times.

For a few drainage areas, a unique situation occurs where the time of concentration that produces the largest amount of runoff is less than the time of concentration for the entire basin. This can occur when two or more subbasins have dramatically different types of cover (i.e., different runoff coefficients). The most common case would be a large paved area together with a long narrow strip of natural area. In this case, the designer should check the runoff produced by the paved area alone to determine if this scenario would cause a greater peak runoff rate than the peak runoff rate produced when both land segments are contributing flow. The scenario that produces the greatest runoff should be used, even if the entire basin is not contributing flow to this runoff.

The procedure for determining the time of concentration for overland flow was developed by the United States Natural Resources Conservation Service (formerly known as the Soil Conservation Service) and is described below. It is sensitive to slope, type of ground cover, and the size of channel. If the total time of concentration is less than 5 minutes, a minimum of five minutes should be used as the duration, see Section 2-5.4 for details. The time of concentration can be calculated as in Equations 2-2 and 2-3:
$T_{t}=\frac{L}{K \sqrt{S}}=\frac{L^{1.5}}{K \sqrt{\Delta H}}$

$$
\begin{equation*}
T_{c}=T_{t 1}+T_{t 2}+\ldots T_{\text {tnz }} \tag{2-3}
\end{equation*}
$$

Where:
$T_{t}=$ travel time of flow segment in minutes
$T_{c}=$ time of concentration in minutes
$\mathrm{L}=$ length of segment in feet (meters)
$\Delta \mathrm{H}=$ elevation change across segment in feet (meters)
$\mathrm{K}=$ ground cover coefficient in feet (meters)
$S=$ slope of segment $\frac{\Delta H}{L}$ in feet per feet (meter per meter)

Type of Cover		K (English)	K (Metric)
Forest with heavy ground cover		150	50
Minimum tillage cultivation		280	75
Short pasture grass or lawn		420	125
Nearly bare ground		600	200
Small roadside ditch w/grass		900	275
Paved area		1,200	375
Gutter flow	4 inch deep (100 mm)	1,500	450
	6 inch deep (150 mm)	2,400	725
	8 inch deep (200 mm)	3,100	950
Storm sewers	1 foot diam. (300 mm)	3,000	925
	18 inch diam. (450 mm)	3,900	1,200
	2 feet diam. (600 mm)	4,700	1,425
Open Channel Flow ($\mathrm{n}=.040$) Narrow Channel ($\mathrm{w} / \mathrm{d}=1$)	1 foot deep (300 mm)	1,100	350
	2 feet deep (600 mm)	1,800	550
	4 feet deep (1.20 m)	2,800	850
Open Channel Flow ($\mathrm{n}=.040$) Wide Channel (w/d = 9)	1 foot deep (300 mm)	2,000	600
	2 feet deep (600 mm)	3,100	950
	4 feet deep (1.20 m)	5,000	1,525

Ground Cover Coefficients

Figure 2-5.3

2-5.4 Rainfall Intensity

After the appropriate storm frequency for the design has been determined (see Chapter 1) and the time of concentration has been calculated, the rainfall intensity can be calculated. Designers should never use a time of concentration that is less than 5 minutes for intensity calculations, even when the calculated time of concentration is less than 5 minutes. The 5-minute limit is based on two ideas:

1. Shorter times give unrealistic intensities. Many IDF curves are constructed from curve smoothing equations and not based on actual data collected at intervals shorter than 15 to 30 minutes. To make the curves shorter, involves extrapolation, which is not reliable.
2. It takes time for rainfall to generate into runoff within a defined basin, thus it would not be realistic to have less than 5 minutes for a time of concentration.

It should be noted that the rainfall intensity at any given time is the average of the most intense period enveloped by the time of concentration and is not the instantaneous rainfall. Equation 2-4 is the equation for calculating rainfall intensity.

$$
\begin{equation*}
1=\frac{m}{\left(T_{c}\right)^{n}} \tag{2-4}
\end{equation*}
$$

$\begin{aligned} & \text { Where: } \\ & \begin{aligned} \text { । } & =\text { rainfall intensity in inches per hour (millimeters per hour) } \\ T_{c} & =\text { time of concentration in minutes } \\ m \& n & =\text { coefficients in dimensionless units (Figures 2-5.4A and 2-5.4B) }\end{aligned}\end{aligned}$
The coefficients (m and n) have been determined for all major cities for the $2-, 5-, 10-, 25-, 50$-, and 100-year mean recurrence intervals (MRI). The coefficients listed are accurate from 5-minute durations to 1,440 -minute durations (24 hours). These equations were developed from the 1973 National Oceanic and Atmospheric Administration Atlas 2, Precipitation-Frequency Atlas of the Western United States, Volume IX-Washington.

With the Region Hydraulic Engineer's assistance, the designer should interpolate between the two or three nearest cities listed in the tables when working on a project that is in a location not listed on the table. If the designer must do an analysis with a T_{c} greater than 1,440 minutes, the Rational method should not be used.

Location	2-Year MRI		5-Year MRI		10-Year MRI		25-Year MRI		50-Year MRI		100-Year MRI	
	m	n	m	n	m	n	m	n	m	n	m	n
Aberdeen and Hoquiam	5.10	0.488	6.22	0.488	7.06	0.487	8.17	0.487	9.02	0.487	9.86	0.487
Bellingham	4.29	0.549	5.59	0.555	6.59	0.559	7.90	0.562	8.89	0.563	9.88	0.565
Bremerton	3.79	0.480	4.84	0.487	5.63	0.490	6.68	0.494	7.47	0.496	8.26	0.498
Centralia and Chehalis	3.63	0.506	4.85	0.518	5.76	0.524	7.00	0.530	7.92	0.533	8.86	0.537
Clarkston and Colfax	5.02	0.628	6.84	0.633	8.24	0.635	10.07	0.638	11.45	0.639	12.81	0.639
Colville	3.48	0.558	5.44	0.593	6.98	0.610	9.07	0.626	10.65	0.635	12.26	0.642
Ellensburg	2.89	0.590	5.18	0.631	7.00	0.649	9.43	0.664	11.30	0.672	13.18	0.678
Everett	3.69	0.556	5.20	0.570	6.31	0.575	7.83	0.582	8.96	0.585	10.07	0.586
Forks	4.19	0.410	5.12	0.412	5.84	0.413	6.76	0.414	7.47	0.415	8.18	0.416
Hoffstadt Cr. (SR 504)	3.96	0.448	5.21	0.462	6.16	0.469	7.44	0.476	8.41	0.480	9.38	0.484
Hoodsport	4.47	0.428	5.44	0.428	6.17	0.427	7.15	0.428	7.88	0.428	8.62	0.428
Kelso and Longview	4.25	0.507	5.50	0.515	6.45	0.509	7.74	0.524	8.70	0.526	9.67	0.529
Leavenworth	3.04	0.530	4.12	0.542	5.62	0.575	7.94	0.594	9.75	0.606	11.08	0.611
Metaline Falls	3.36	0.527	4.90	0.553	6.09	0.566	7.45	0.570	9.29	0.592	10.45	0.591
Moses Lake	2.61	0.583	5.05	0.634	6.99	0.655	9.58	0.671	11.61	0.681	13.63	0.688
Mt. Vernon	3.92	0.542	5.25	0.552	6.26	0.557	7.59	0.561	8.60	0.564	9.63	0.567
Naselle	4.57	0.432	5.67	0.441	6.14	0.432	7.47	0.443	8.05	0.440	8.91	0.436
Olympia	3.82	0.466	4.86	0.472	5.62	0.474	6.63	0.477	7.40	0.478	8.17	0.480
Omak	3.04	0.583	5.06	0.618	6.63	0.633	8.74	0.647	10.35	0.654	11.97	0.660
Pasco and Kennewick	2.89	0.590	5.18	0.631	7.00	0.649	9.43	0.664	11.30	0.672	13.18	0.678
Port Angeles	4.31	0.530	5.42	0.531	6.25	0.531	7.37	0.532	8.19	0.532	9.03	0.532
Poulsbo	3.83	0.506	4.98	0.513	5.85	0.516	7.00	0.519	7.86	0.521	8.74	0.523
Queets	4.26	0.422	5.18	0.423	5.87	0.423	6.79	0.423	7.48	0.423	8.18	0.424
Seattle	3.56	0.515	4.83	0.531	5.62	0.530	6.89	0.539	7.88	0.545	8.75	0.5454
Sequim	3.50	0.551	5.01	0.569	6.16	0.577	7.69	0.585	8.88	0.590	10.04	0.593
Snoqualmie Pass	3.61	0.417	4.81	0.435	6.56	0.459	7.72	0.459	8.78	0.461	10.21	0.476
Spokane	3.47	0.556	5.43	0.591	6.98	0.609	9.09	0.626	10.68	0.635	12.33	0.643
Stevens Pass	4.73	0.462	6.09	0.470	8.19	0.500	8.53	0.484	10.61	0.499	12.45	0.513
Tacoma	3.57	0.516	4.78	0.527	5.70	0.533	6.93	0.539	7.86	0.542	8.79	0.545
Vancouver	2.92	0.477	4.05	0.496	4.92	0.506	6.06	0.515	6.95	0.520	7.82	0.525
Walla Walla	3.33	0.569	5.54	0.609	7.30	0.627	9.67	0.645	11.45	0.653	13.28	0.660
Wenatchee	3.15	0.535	4.88	0.566	6.19	0.579	7.94	0.592	9.32	0.600	10.68	0.605
Yakima	3.86	0.608	5.86	0.633	7.37	0.644	9.40	0.654	10.93	0.659	12.47	0.663

Index to Rainfall Coefficients (English Units)
Figure 2-5.4A

Location	2-Year MRI		5-Year MRI		10-Year MRI		25-Year MRI		50-Year MRI		100-Year MRI	
	m	n	m	n	m	n	m	n	m	n	m	n
Aberdeen and Hoquiam	129	0.488	158	0.488	179	0.487	208	0.487	229	0.487	250	0.487
Bellingham	109	0.549	142	0.555	167	0.559	201	0.562	226	0.563	251	0.565
Bremerton	96	0.480	123	0.487	143	0.490	170	0.494	190	0.496	210	0.498
Centralia and Chehalis	92	0.506	123	0.518	146	0.524	178	0.530	201	0.533	225	0.537
Clarkston and Colfax	128	0.628	174	0.633	209	0.635	256	0.638	291	0.639	325	0.639
Colville	83	0.558	138	0.593	177	0.610	230	0.626	271	0.635	311	0.642
Ellensburg	73	0.590	132	0.631	179	0.649	240	0.664	287	0.672	335	0.678
Everett	94	0.556	132	0.570	160	0.575	199	0.582	228	0.585	256	0.586
Forks	106	0.410	130	0.412	148	0.413	172	0.414	190	0.415	208	0.416
Hoffstadt Cr. (SR 504)	101	0.448	132	0.462	156	0.469	189	0.476	214	0.480	238	0.484
Hoodsport	114	0.428	138	0.428	157	0.427	182	0.428	200	0.428	219	0.428
Kelso and Longview	108	0.507	140	0.515	164	0.519	197	0.524	221	0.526	246	0.529
Leavenworth	77	0.530	105	0.542	143	0.575	202	0.594	248	0.606	281	0.611
Metaline Falls	85	0.527	124	0.553	155	0.566	189	0.570	236	0.592	265	0.591
Moses Lake	66	0.583	128	0.634	178	0.655	243	0.671	295	0.681	346	0.688
Mt. Vernon	100	0.542	133	0.552	159	0.557	193	0.561	218	0.564	245	0.567
Naselle	116	0.432	144	0.441	156	0.432	190	0.443	204	0.440	226	0.436
Olympia	97	0.466	123	0.472	143	0.474	168	0.477	188	0.478	208	0.480
Omak	77	0.583	129	0.618	168	0.633	222	0.647	263	0.654	304	0.660
Pasco and Kennewick	73	0.590	132	0.631	178	0.649	240	0.664	287	0.672	335	0.678
Port Angeles	109	0.530	138	0.531	159	0.531	187	0.532	208	0.532	229	0.532
Poulsbo	97	0.506	126	0.513	149	0.516	178	0.519	200	0.521	222	0.523
Queets	108	0.422	132	0.423	149	0.423	172	0.423	190	0.423	208	0.424
Seattle	90	0.515	123	0.531	143	0.530	175	0.539	200	0.545	222	0.545
Sequim	89	0.551	127	0.569	156	0.577	195	0.585	226	0.590	255	0.593
Snoqualmie Pass	92	0.417	122	0.435	167	0.459	196	0.459	223	0.461	259	0.476
Spokane	88	0.556	138	0.591	177	0.609	231	0.626	271	0.635	313	643
Stevens Pass	120	0.462	155	0.470	208	0.500	217	0.484	269	0.499	316	513
Tacoma	91	0.516	121	0.527	145	0.533	176	0.539	200	0.542	223	545
Vancouver	74	0.477	103	0.496	125	0.506	154	0.515	177	0.520	199	0.525
Walla Walla	85	0.569	141	0.609	185	0.627	246	0.645	291	0.653	337	0.660
Wenatchee	80	0.535	124	0.566	157	0.579	202	0.592	237	0.600	271	0.605
Yakima	98	0.608	149	0.633	187	0.644	239	0.654	278	0.659	317	0.663

2-5.5 Rational Formula Example

Compute the 25-year runoff for the Spokane watershed shown above. Three types of flow conditions exist from the highest point in the watershed to the outlet. The upper portion is 4.0 acres of forest cover with an average slope of $0.15 \mathrm{ft} / \mathrm{ft}$. The middle portion is 1.0 acres of single family residential with a slope of $0.06 \mathrm{ft} / \mathrm{ft}$ and primarily lawns. The lower portion is a 0.8 acres park with 18 -inch storm sewers with a general slope of $0.01 \mathrm{ft} / \mathrm{ft}$.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{C}}=\sum \frac{\mathrm{L}}{\mathrm{~K} \sqrt{S}}=\frac{1,800}{150 \sqrt{0.15}}+\frac{650}{420 \sqrt{0.06}}+\frac{820}{3,900 \sqrt{0.01}} \\
& \mathrm{~T}_{\mathrm{c}}=31 \mathrm{~min}+6 \mathrm{~min}+2 \mathrm{~min}=39 \mathrm{~min} \\
& \mathrm{I}=\frac{\mathrm{m}}{\left(\mathrm{~T}_{\mathrm{c}}\right)^{n}}=\frac{9.09}{(39)^{0.626}}=0.93 \frac{\mathrm{in}}{\mathrm{hr}} \\
& \Sigma \mathrm{CA}=0.22(4.0 \text { acres })+0.44(1.0 \text { acres })+0.11(0.8 \text { acres })=1.4 \text { acres } \\
& Q=\frac{\mathrm{I}\left(\sum \mathrm{CA}\right)}{\mathrm{K}_{\mathrm{c}}}=\frac{(0.93)(1.4)}{1}=1.31 \mathrm{cfs}
\end{aligned}
$$

2-6 Single-Event Hydrograph Method: Santa Barbara Urban Hydrograph

Of the several commonly accepted hydrograph methods, the Santa Barbara Urban Hydrograph (SBUH) method is the best suited for WSDOT projects where conveyance systems are being designed and for some stormwater
treatment facilities in eastern Washington. SBUH was developed to calculate flow that will occur from surface runoff and is most accurate for drainage basins smaller than 100 acres (40 hectares) although it can be used for drainage basins up to 1,000 acres (400 hectares). SBUH should not be used where groundwater flow can be a major contributor to the total flow. While not all WSDOT projects are in urban basins, it is typically the paved surfaces (similar to urban areas) that generate the majority of the total flow.

An SBUH analysis requires that the designer understand certain characteristics of the project site, such as drainage patterns, predicted rainfall, soil type, area to be covered with impervious surfaces, type of drainage conveyance, and for eastern Washington the flow control BMP that will be used. The physical characteristics of the site and the design storm determine the magnitude, volume, and duration of the runoff hydrograph. Other factors, such as the conveyance characteristics of channel or pipe, merging tributary flows, and type of BMP used, will alter the shape and magnitude of the hydrograph. The key elements of a single-event hydrograph analysis are listed below (and described in more detail in this section):

- Design storm hyetograph.
- Runoff parameters.
- Hydrograph synthesis.
- Hydrograph routing.
- Hydrograph summation.

While the equations for the SBUH method are fairly simple, it is computationally intensive and would take hours if done by hand. Because of this, the only practical way to perform an analysis is to use a computer application. There are several commercially available computer programs that include the SBUH method, however the recommended software for WSDOT project is StormShed. Other commercially available computer program may also be used with prior approval from the State Hydraulic Engineer.

2-6.1 Design Storm Hyetograph

The SBUH method requires the input of a rainfall distribution or design storm hyetograph. The design storm hyetograph is rainfall depth versus time for a given design storm frequency and duration. For this application, it is presented as a dimensionless table of unit rainfall depth (incremental rainfall depth for each time interval divided by the total rainfall depth) versus time. The type of design storm used depends on the project locations as noted below:

- Eastern Washington - For projects in eastern Washington, the design storms are the short duration storm for conveyance design and the regional storm for volume based stormwater facilities. (Design storms are discussed further in Appendix 4C of the Highway Runoff Manual.)
- Western Washington - For projects in western Washington, the design storm for conveyance design is the Type 1A storm. For designs other than conveyance, see Section 2-7 for a description of the Continuous Simulation method.

Along with the design storm, precipitation depths are needed and should be selected for the city that is closest to the project site from the contours on an isopluvial map. The National Weather Service publishes isopluvial maps for different storm durations and recurrence intervals and links to these maps can be found in Appendix 4A of the Highway Runoff Manual or can be obtained from the HQ Hydraulics Office. ArcGIS has the isopluvial maps loaded into the program and may be the most accurate method since precipitation depths are given for the exact location of a project.

2-6.2 Runoff Parameters

The SBUH method requires input of parameters that describe physical drainage basin characteristics. These parameters provide the basis from which the runoff hydrograph is developed. This section describes the three key parameters (contributing drainage basin areas; runoff curve number; and runoff time of concentration) that, when combined with the rainfall hyetograph in the SBUH method, develop the runoff hydrograph. The proper selection and delineation of the contributing drainage basin areas to the BMP or structure of interest is required in the hydrograph analysis. The contributing basin area(s) used should be relatively homogeneous in land use and soil type. If the entire contributing basin is similar in these aspects, the basin can be analyzed as a single area. If significant differences exist within a given contributing drainage basin, it must be divided into subbasin areas of similar land use and soil characteristics. Hydrographs should then be computed for each subbasin area and summed to form the total runoff hydrograph for the basin. Contributing drainage basins larger than 100 acres should be divided into subbasins. By dividing large basins into smaller subbasins and then combining calculated flows, the timing aspect of the generated hydrograph is typically more accurate. Basin delineation is not the same as TDA delineation. For more details on delineation of TDAs, see Section 4-2.5.

Curve Numbers

The NRCS has conducted studies into the runoff characteristics of various land types. After gathering and analyzing extensive data, the NRCS developed relationships between land use, soil type, vegetation cover, interception, infiltration, surface storage, and runoff. The relationships have been characterized by a single runoff coefficient called a curve number (CN). CNs are chosen to depict average conditions-neither dry, nor saturated. The designer is referred to FHWA Ip-80-1 for more information on choosing appropriate curve numbers. Appendix 4B of the Highway Runoff Manual shows suggested CN values for various land covers and soil conditions.

The factors that contribute to the CN value are known as the soil-cover complex. The soilcover complexes have been assigned to one of four hydrologic soil groups, according to their runoff characteristics. These soil groups are labeled Types A, B, C, and D; with Type A generating the least amount of runoff and Type D generating the greatest. Appendix 4B of the Highway Runoff Manual shows the hydrologic soil groups of most soils in Washington State. The different soil groups can be described as follows:

- Type A - Soils having high infiltration rates, even when thoroughly wetted, and consisting chiefly of deep, well-drained to excessively drained sands or gravels. These soils have a high rate of water transmission.
- Type B - Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
- Type C - Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water or soils with moderately fine to fine textures. These soils have a slow rate of water transmission.
- Type D - Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a hardpan or clay layer at or near the surface, and shallow soils over bedrock or other nearly impervious material. These soils have a very slow rate of water transmission.

The NRCS (formerly the Soil Conservation Service, or SCS) has developed maps for Washington State that show the specific soil classification for any given location. These maps are compiled by county and are typically available from the regional NRCS office. To determine which soil group to use for an analysis, locate the project site on the SCS map and read the soil classification listed. (See Appendix 4B of the Highway Runoff Manual for a web link to data to convert from the specific soil classification to a hydrologic soil group.) The WSDOT Materials Lab can also perform a soil analysis to determine the soil group for the project site. This should be done only if an SCS soils map cannot be located for the county in which the site is located; the available SCS map does not characterize the soils at the site (many SCS maps show "urban land" in highway right of ways and other heavily urbanized areas where the soil properties are uncertain); or there is reason to doubt the accuracy of the information on the SCS map for the particular site.

When performing an SBUH analysis for a basin, it is common to encounter more than one soil type. If the soil types are fairly similar (within 20 CN points), a weighted average can be used. If the soil types are significantly different, the basin should be separated into smaller subbasins (previously described for different land uses). Pervious ground cover and impervious
ground cover should always be analyzed separately. If the computer program StormShed is used for the analysis, pervious and impervious land segments will automatically be separated, but the designer will have to combine and manually weight similar pervious soil types for a basin.

Antecedent Moisture Condition

The moisture condition in a soil at the onset of a storm event, referred to as the antecedent moisture condition (AMC), has a significant effect on both the volume and rate of runoff. Recognizing this, the SCS developed three antecedent soil moisture conditions: I, II, and III.

AMC I: Soils are dry, but not to the wilting point.
AMC II: Average conditions.
AMC III: Heavy rainfall, or light rainfall and low temperatures, has occurred within the last 5 days, near saturated or saturated soil.

Table 2-6 gives seasonal rainfall limits for the three antecedent soil moisture conditions.

AMC	Dormant Season	Growing Season
I	Less than 0.5	Less than 1.4
II	0.5 to 1.1	1.4 to 2.1
III	Over 1.1	Over 2.1

Total 5-Day Antecedent Rainfall (Inches)
Table 2-6
The CN values generally listed are for AMC II, if the AMC falls into either group I or III, the CN value will need to be modified to actually represent the project site conditions. Appendix 4C of the Highway Runoff Manual provides further information regarding when the AMC should be considered and Appendix 4B of the Highway Runoff Manual provides conversions for the curve number for different antecedent moisture conditions for the case of Ia $=0.2 \mathrm{~S}$. For other conversions, see SCS National Engineering Handbook No. 4, 1985.

Time of Concentration

Time of Concentration $\left(\mathrm{T}_{\mathrm{c}}\right)$ is defined as the time for runoff to travel from the hydraulically most distant point of the watershed to a point of interest in the watershed. Travel time $\left(\mathrm{T}_{\mathrm{t}}\right)$ is the time it takes water to travel from one location to another in a watershed. Travel time $\left(\mathrm{T}_{\mathrm{t}}\right)$ is a component of time of concentration $\left(\mathrm{T}_{\mathrm{c}}\right)$, which is computed by summing all the travel times for consecutive components of the drainage flow path. While this section
starts the same as Section 2-5.3, the analysis described in this section is more detailed because how water travels through a basin is classified by flow type. The different types of flow include: sheet flow, shallow concentrated flow, open channel flow, or some combination of these. Classifying flow type is best determined by field inspection and using the parameters described below:

- Sheet flow is flow over plane surfaces. It usually occurs in the headwater areas of streams and also for short distances on evenly graded slopes. With sheet flow, the friction value (ns, which is a modified Manning's roughness coefficient) is used. These ns values are for very shallow flow depths up to about 0.1 foot (3 cm) and are used only for travel lengths up to 300 feet (90 m) on paved surfaces and 150 feet on pervious surfaces. Appendix 4B of the Highway Runoff Manual provides the Manning's $n s$ values for sheet flow at various surface conditions.

For sheet flow of up to 300 feet, use Manning's kinematic solution to directly compute T_{t} :

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{t}}=\left(0.42\left(\mathrm{n}_{\mathrm{s}} \mathrm{~L}\right)^{0.8}\right) /\left(\left(\mathrm{P}_{2}\right)^{0.527}\left(\mathrm{~s}_{\mathrm{o}}\right)^{0.4}\right) \\
& \begin{aligned}
\text { Where: }
\end{aligned} \\
& \begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\text { travel time (minutes) } \\
\mathrm{n}_{\mathrm{s}} & =\text { sheet flow Manning's coefficient (dimensionless) } \\
\mathrm{L} & =\text { flow length (feet) } \\
\mathrm{P}_{2} & =2 \text {-year, 24-hour rainfall (inches) } \\
\mathrm{s}_{\mathrm{o}} & =\text { slope of hydraulic grade line (land slope, ft/ft) }
\end{aligned}
\end{aligned}
$$

- Shallow Flow - After a maximum of 300 feet, sheet flow is assumed to become shallow concentrated flow. The average velocity for this flow can be calculated using the k_{s} values from Appendix 4B of the Highway Runoff Manual. Average velocity is a function of watercourse slope and type of channel. After computing the average velocity using the Velocity Equation (Equation 4-2), the travel time (T_{t}) for the shallow concentrated flow segment can be computed by dividing the length of the segment by the average velocity.
- Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where lines indicating streams appear on USGS Quadrangle maps. For developed drainage systems, the travel time of flow in a pipe is also represented as an open channel. The k_{c} values from Appendix 4B of the Highway Runoff Manual used in the Velocity Equation can be used to estimate average flow velocity. Average flow velocity is usually determined for bank full conditions. After average velocity is computed, the travel time $\left(T_{t}\right)$ for the channel segment can be computed by dividing the length of the channel segment by the average velocity.

A commonly used method of computing average velocity of flow, once it has measurable depth, is the following Velocity Equation:

```
\(\mathrm{V}=(\mathrm{k})(\mathrm{so0} .5)\)
Where:
    \(\mathrm{V}=\) velocity (ft/s)
    \(\mathrm{k}=\) time of concentration velocity factor (ft/s)
    so \(=\) slope of flow path (ft/ft)
```

Regardless of how water moves through a watershed, when estimating travel time $\left(T_{t}\right)$, the following limitations apply:

- Manning's kinematic solution should not be used for sheet flow longer than 300 feet.
- The equations given here to calculate velocity were developed by empirical means; therefore, English Units (such as inches) must be used for all input variables for the equation to yield a correct answer. Once the velocity is calculated, it can be converted to metric units to finish the travel time calculations in the case of shallow concentrated flow and channel flow.

Appendix 4B of the Highway Runoff Manual shows suggested " n " and " k " values for various land covers to be used in travel time calculations.

2-6.3 Hydrograph Synthesis

The SBUH method applies the selected CNs to SCS equations to compute soil absorption and precipitation excess from the rainfall hyetograph. Each time step of this process generates one increment of an instantaneous hydrograph with the same duration. The instantaneous hydrograph is then routed through an imaginary reservoir, with a time delay equal to the basin time of concentration. The end product is the runoff hydrograph for that land segment.

Abstractions (including rainfall interception and storage in small depressions in the ground surface) are also accounted for in the SBUH method. The abstraction of runoff, S , is computed from the CN as follows:

$$
\begin{equation*}
S=(1000 / C N)-10 \tag{2-7}
\end{equation*}
$$

Using the abstraction value and precipitation for the given time step, the runoff depth, D , per unit area is calculated as follows:

$$
\begin{equation*}
D(t)=\left((p(t)-0.2(S))^{\wedge} 2\right) /(p(t)+0.8(S)) \tag{2-8}
\end{equation*}
$$

Where: $p(t)=$ precipitation for the time increment (in)

The total runoff, $R(t)$, for the time increment is computed as follows:

$$
\begin{equation*}
R(t)=D(t)-D(t-1) \tag{2-9}
\end{equation*}
$$

The instantaneous hydrograph, $I(t)$, in cubic feet per second (cfs) at each time step, $d t$, is computed as follows:

$$
\begin{equation*}
I(\mathrm{t})=60.5 \mathrm{R}(\mathrm{t}) \mathrm{A} / \mathrm{dt} \tag{2-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{A}=\text { area (acres) } \\
& \mathrm{dt}=\text { time interval (min) }
\end{aligned}
$$

Note: A time interval of 10 minutes can be used for the Type 1A storm or the Regional Long-Duration Storm, however a 5 minute interval should always be used for the Short-Duration Storm. The runoff hydrograph, $Q(t)$, is then obtained by routing the instantaneous hydrograph $I(t)$ through an imaginary reservoir with a time delay equal to the time of concentration of the drainage basin. The following equation estimates the routed flow, $Q(t)$:

$$
\begin{equation*}
Q(t+1)=Q(t)+w[l(t)+I(t+1)-2 Q(t)] \tag{2-11}
\end{equation*}
$$

Where:
$w=d t /\left(2 T_{c}+d t\right)$
$T_{c}=$ time of concentration for the contributing drainage basin area

2-6.4 Level Pool Routing

This section presents the methodology for routing a hydrograph through a stormwater facility using hydrograph analysis. Level pool routing is done the same way regardless of the method used to generate the hydrograph; therefore, this part of the analysis is not unique to the SBUH method. The level pool routing technique presented here is one of the simplest and most commonly used hydrograph routing methods and is the method used by StormShed. It is based on the following continuity equation:

$$
\begin{align*}
& \text { Inflow - Outflow = Change in Storage } \tag{2-12}\\
& ((11+\mathrm{I} 2) / 2)-((\mathrm{O} 1+\mathrm{O} 2) / 2)=\mathrm{S} 2-\mathrm{S} 1
\end{align*}
$$

Where:
I1, $\mathrm{I} 2=$ inflow at time 1 and time 2
$\mathrm{O} 1, \mathrm{O} 2=$ outflow at time 1 and time 2
$\mathrm{S} 1, \mathrm{~S} 2=$ storage at time 1 and time 2

The time interval for the routing analysis must be consistent with the time interval used in developing the inflow hydrograph. The time interval used for a 24 -hour storm is 10 minutes. The variables can be rearranged to obtain the following equation:

$$
\begin{equation*}
\mathrm{I} 1+\mathrm{I} 2+2 \mathrm{~S} 1-\mathrm{O} 1=\mathrm{O} 2+2 \mathrm{~S} 2 \tag{2-13}
\end{equation*}
$$

If the time interval is in minutes, the unit of storage (S) is now cubic feet per minute (cf/min), which can be converted to cfs by multiplying by $1 \mathrm{~min} / 60 \mathrm{sec}$. The terms on the left-hand side of the equation are known from the inflow hydrograph and from the storage and outflow values of the previous time step. The unknowns O and S can be solved interactively from the given stage-storage and stage-discharge curves. As with the synthesis of a hydrograph, the computations are fairly simple, but very voluminous. The best way to route a hydrograph through a stormwater facility is to use a computer program. Many hydrologic analysis software programs include features that make hydrograph routing an easy process including Storm Shed.

2-6.5 Hydrograph Summation

One of the key advantages of hydrograph analysis is the ability to accurately describe the cumulative effect of runoff from several contributing drainage basin areas having different runoff characteristics and travel times. This cumulative effect is best characterized by a single hydrograph, which is obtained by summing the individual hydrographs from tributary basins at a particular discharge point of interest. The general procedure for performing a hydrograph summation begins with selecting a discharge point of interest where it is important to know the effects of the runoff generated on the project site. Next, route each individual hydrograph through a conveyance system that carries it to the point of interest. The final step is to sum the flow values for each hydrograph for all of the time intervals. This will yield a single discharge hydrograph.

2-7 Continuous Simulation Method (Western Washington Only for Stormwater)

When designing stormwater facilities in western Washington, the designer must use an approved continuous simulations model, to meet the requirements of the most current version of the Highway Runoff Manual. A continuous simulation model captures the back to back affects of storm events that are more common in western Washington. These events are associated with high volumes of flow from sequential winter storms rather than high peak flow from short duration events as is characteristic in eastern Washington. WSDOT's approved continuous simulation hydrologic model is MGSFlood (see Section 4-3.5.2 of the Highway Runoff Manual) which uses the HSPF routines for computing runoff from rainfall on pervious and impervious
land areas. In addition, MGSFlood has the BMP design criteria built into the software and will alert the designer regarding whether the runoff treatment flow rates and volumes meet the requirements of the Highway Runoff Manual. See the HQ Hydraulics web page for a detailed example of this modeling approach and for information on how to obtain a copy of the public domain program at ${ }^{\circ}$ www.wsdot.wa.gov/Design/Hydraulics/Training.htm.

MGSFlood does have limitations that the designer should understand before using the program, regarding the project location, conveyance design, and the size of the basin. MGSFlood is for projects in western Washington only, at elevations below 1500 feet, and for basins up to 320 acres (about onehalf square mile). The program does not include routines for simulating the accumulation and melting of snow, and its use should be limited to areas where snowmelt is typically not a major contributor to floods or to the annual runoff volume. MGSFlood is generally not used for conveyance design unless a conveyance system is downstream of a stormwater pond and the 15 minute time step is used. For projects located in western Washington that fall outside the modeling guidelines described in this paragraph, contact region or HQ hydraulics staff for assistance.

2-7.1 Modeling Requirements

MGSFlood should be used once the designer has selected the BMP(s) for the project site and has determined the input values for: precipitation, drainage basin delineation, and soil characteristics. Each of these input values are further described in the sections below.

2-7.1.2 Precipitation Input

There are two methods for transposing precipitation timeseries that are available in the continuous simulation model: Extended Precipitation Timeseries Selection and Precipitation Station Selection. The designer will generally select the Extended Precipitation Timeseries unless it is not available for a project site, then the Precipitation Station is selected. Both methods are further described below.

1. Extended Precipitation Timeseries Selection - Extended Precipitation Timeseries uses a family of prescaled precipitation and evaporation timeseries. These timeseries were developed by combining and scaling precipitation records from widely separated stations, resulting in record lengths in excess of 100 years. Extended hourly precipitation and evaporation timeseries have been developed using this method for most of the lowland areas of western Washington where WSDOT projects are constructed. These timeseries should be used for stormwater facility design for project sites with a mean annual precipitation ranging from 24 to 60 inches and located in the region shown in Figure 2-7.1.

Extended Precipitation Timeseries Regions
 Figure 2-7.1

2. Precipitation Station Selection - For project sites located outside the extended timeseries region, a second precipitation scaling method is used. A source gage is selected and a single scaling factor is applied to transpose the hourly record from the source gage to the site of interest (target site). The current approach for single factor scaling, as recommended in Ecology's SMMWW, is to compute the scaling factor as the ratio of the 25 -year, 24-hour precipitation for the target and source sites. Contact region or Headquarters Hydraulics staff if assistance is needed in selecting the appropriate gage. Updating areas with the extended precipitation timeseries will be done eventually for all of western Washington, based on available funding.

2-7.1.3 TDAs and Drainage Basin Characteristics

To facilitate rainfall-runoff modeling the project site must be defined in terms of Threshold Discharge Areas (TDAs) and drainage basins. The Highway Runoff Manual Minimum Requirements for flow control and/or runoff treatment might be triggered in some or all TDAs along the project. For those TDAs that require a stormwater BMP, drainage basins should show the areas of land that contribute flow to a point of interest; typically a stormwater BMP. Since the continuous simulation model simulates the rainfall-runoff for each land cover/soil type combination separately, determining both the predeveloped and post developed land cover is critical. Additionally, any areas that are reverted to pervious surfaces should be accounted for as well.

Finally, if there are any existing wetlands within the TDA and stormwater is proposed to discharge or detract from the natural wetland evaluation of the hydroperiod maybe necessary.

The delineation and specifics of TDAs are part of the Highway Runoff Manual requirements and designers should review the following sections of the manual prior to using MGSFlood:

1. TDA Delineation - Section 4-2.5
2. Predeveloped Land Cover - Section 4-3.6
3. Reverision of an Existing Impervious Surface - Section 4-3.6
4. Separation of On-Site and Off-Site Flow - Section 4-3.6
5. Wetland Hydroperiods - Section 4-6

2-7.1.4 Hydrologic Soil Groups

For each basin, land use is defined in units of acres for predeveloped and developed conditions. Soils must be classified into one of three default categories for use in the continuous simulation model: till, outwash, or saturated soil (as defined by the USGS). Mapping of soil types by the Soil Conservation Service (SCS), which is now the Natural Resource Conservation Service (NRCS), is the most common source of soil/geologic information used in hydrologic analyses for stormwater facility design. Each soil type defined by the NRCS has been classified into one of four hydrologic soil groups: A, B, C , and D . As is common in hydrologic modeling in western Washington, the soil groups used in the continuous simulation model generally correspond to the NRCS hydrologic soil groups shown in Table 2-7.2.

NRCS Group	HSPF Group
A	Outwash
B	Till or Outwash
C	Till
D	Wetland

Relationship Between NRCS Hydrologic Soil Group and HSPF Soil Group

Table 2-7.2
NRCS Type B soils can be classified as either glacial till or outwash, depending on the type of soil under consideration. Type B soils underlain by glacial till or bedrock, or that have a seasonally high water table, are classified as till. Conversely, well-drained B-type soils should be classified as outwash. It is very important to work with the WSDOT Materials Lab or a licensed geotechnical engineer to make sure the soil properties and near-surface
hydrogeology of the site are well understood, as they are significant factors in the final modeling results. Appendix 4B of the Highway Runoff Manual contains some soils classification information for preliminary work.

Wetland soils remain saturated throughout much of the year. The hydrologic response from wetlands is variable, depending on the underlying geology, the proximity of the wetland to the regional groundwater table, and the geometry of the wetland. Generally, wetlands provide some base flow to streams in the summer months and attenuate storm flows via temporary storage and slow release in the winter. Special design consideration must be taken into account when including wetlands in continuous simulation runoff modeling.

2-8 Published Flow Records

When available, published flow records provide the most accurate data for designing culverts and bridge openings. This is because the values are based on actual measured flows and not calculated flows. The streamflows are measured at a gaging site for several years. A statistical analysis (typically Log Pearson Type III) is then performed on the measured flows to predict the recurrence intervals.

The USGS maintains a large majority of the gaging sites throughout Washington State. A list of all of the USGS gages, with adequate data to develop the recurrence intervals, is provided in Appendix 2-1 along with the corresponding latitude, longitude, hydrologic unit, and drainage area. Flood discharges for these gaging sites, at selected exceedance probabilities (based on historical data up to 1996), can be found in Table 2 at the following Web link: ऊ http://wa.water.usgs.gov/pubs/wrir/flood_freq/.

In addition to these values, the HQ Hydraulics Office maintains records of daily flows and peak flows for all of the current USGS gages. Also, average daily flow values for all current and discontinued USGS gages are available through the Internet on the USGS homepage (note these are average daily values and not peak values) at ७ © http://waterdata.usgs.gov/usa/nwis/ dvstat?referred_module $=$ sw.

Historical data for additional gaging sites is available through the Stream Hydrology Unit (SHU) of Ecology's Environmental Monitoring and Trends Section. This flow information was recorded in support of the salmon recovery efforts and water resource management. While discharge is measured at these sites 6 to 8 times a year, the majority of the actual measurements are of stream stage and a calculated stream discharge. The calculations are made using information from stream gages operated by other governmental agencies (primarily the USGS) and rating curves developed by SHU that relate river stage to discharge (\smile www.ecy.wa.gov/programs/eap/flow/shu_main.html).

Some local agencies also maintain streamflow gages. Typically, these are on smaller streams than the USGS gages. While the data obtained from these gages is usually of high enough quality to use for design purposes, the data is not always readily available. If the designer thinks that there is a possibility that a local agency has flow records for a particular stream then the engineering department of the local agency should be contacted. The HQ Hydraulics Office does not maintain a list of active local agency streamflow gages.

2-9 USGS Regression Equations

While measured flows provide the best data for design purposes, it is not practical to gage all rivers and streams in the state. A set of equations has been developed by USGS to calculate flows for drainage basins in the absence of a streamflow gage. The equations were developed by performing a regression analysis on streamflow gage records to determine which drainage basin parameters are most influential in determining peak runoff rates

The equations break the state up into nine unique hydrologic regions, as shown on the map in Appendix 2-2. The various hydrologic regions require different input variables, depending on the hydrologic region. Input parameters that maybe required include: total area of the drainage basin, percent of the drainage basin that is in forest cover, and percent of the drainage basin that is in lakes, swamps, or ponds. These variables can be determined by the designer through use of site maps, aerial photographs, and site inspections.

For some hydrologic regions, the designer will need to determine the Mean Annual Precipitation (MAP) which can be found through the Web links in Appendix 2-3. It should be noted that the regression equations were developed using the 1965 NOAA precipitation maps and the maps in Appendix 2-3 are an update to these maps. The new maps are considered more accurate because the values are based on more actual precipitation data and an improved methodology for determining precipitation values is utilized. However, in some areas of Washington there was a significant change in the precipitation values from the 1965 maps and designers should verify that the new precipitation value is within the MAP limits noted on the Regression Equation worksheets. In addition to the MAP limits, each region has limits for the drainage basin area size. The designer should be careful not to use data that is outside of the limits specified for the equations since the accuracy of the equations is unknown beyond these points.

The designer must be aware of the limitations of these equations. They were developed for natural rural basins, however the equations have been updated with current flood events. The equations can be used in urban ungaged areas with additional back-up data, i.e., comparing results to nearest gage data for calibration and a sensitivity analysis, field inspection of highwater lines and information from local maintenance. Designers should contact the Region Hydraulics Engineer for further guidance. Also any river that has a dam and reservoir in it should not be analyzed with these equations. Finally, the designer must keep in mind that due to the simple nature of these equations and the broad range of each hydrologic region, the results of the equations contain a fairly wide confidence interval, represented as the standard error.

The standard error is a statistical representation of the accuracy of the equations. Each equation is based on many rivers and the final result represents the mean of all the flow values for the given set of basin characteristics. The standard error shows how far out one standard deviation is for the flow that was just calculated. For a bell- shaped curve in statistical analysis, 68 percent of all the samples are contained within the limits set by one standard deviation above the mean value and one standard deviation below the mean value. It can also be viewed as indicating that 50 percent of all the samples are equal to or less than the flow calculated with the equation and 84 percent of all samples are equal to or less than one standard deviation above the flow just calculated.

The designers shall use the mean value determined from the regression equations with no standard error or confidence interval. If the flows are too low or too high for that basin based on information that the designer has collected, then the designer may apply the standard error specific to the regression equation accordingly. The designer should consult the Region Hydraulic Engineer for assistance.

The equations were updated as noted in Appendix 2-2 and are only presented in English units. To obtain metric flow data, the designer should input the necessary English units data into the appropriate regression equation and then multiply the results by 0.02832 to convert the final answer to cubic meters per second.

Estimates of the magnitude and frequency of flood-peak discharges and flood hydrographs are used for a variety of purposes, such as the design of bridges, culverts, and flood-control structures, and for the management and regulation of flood plains.

In addition to the worksheets at the end of this chapter, the USGS has programs to improve the process of estimating peak flows. One program is the National Flood Frequency (NFF) Program, which acts as a calculator taking the manual input of the physical site and climate characteristics and then using the regression equations to calculate the peak flow and the standard error. The program is available for designers use at the following web site and should be loaded by the Region IT: ऊ http://water.usgs.gov/software/nff.html. Streamstats is another USGS tool that not only estimates peak flows, but can also delineate the basin area and determine the MAP as well as other basin characteristics. Streamstats can be found at the following web site: $\mathcal{O}^{\boldsymbol{*}} \mathrm{http}: / /$ water.usgs.gov/osw/streamstats/Washington.html. It should be noted that Streamstats uses the 1965 NOAA maps and may produce a slightly different result than the map links on Appendix 2-3.

2-10 Flood Reports

Flood reports have been developed for many rivers in Washington State. Most of these reports, and the ones that are most readily accessible, have been developed by the Federal Emergency Management Agency (FEMA). Other reports have been developed by the United States Army Corps of Engineers and by some local agencies.

These reports are a good source of flow information since they were developed to analyze the flows during flooding conditions of a particular river or stream. The types of calculations used by the agency conducting the analysis are more complex than the rational method or USGS regression equations and because of this are more accurate. The increased time required to perform these complex calculations is not justified for the typical structure that WSDOT is designing; however, if the analysis has already been performed by another agency, then it is in WSDOT's best interest to use this information. Flood study data should never be used in place of published flow records.

The HQ Hydraulics Office maintains a complete set of FEMA reports and also has several Corps of Engineers flood reports. Region Environmental Offices should be contacted for local agency reports.

2-11 Mean Annual Runoff

Sometimes it is necessary to determine the mean annual flow or runoff for a given stream. When published flow records are available they are the best source of information. Minor streams, which do not have any gaging records available, can be estimated by the following procedure:

English Units:
$Q=\frac{(M A R) A}{13.6}$
Where:
$Q \quad=$ mean annual runoff in cfs
MAR = mean annual runoff in inches taken from Appendix 2-3
A = area of the drainage basin in square miles
Metric Units:
$Q=\frac{(\text { MAR }) A}{1,241}$
Where:
Q = mean annual runoff in cms
MAR = mean annual runoff in inches taken from Appendix 2-2
A = area of the drainage basin in kilometers

Appendix 2-1 USGS Streamflow Gage Peak Flow Records

Site - ID
12020000 12020500 12020565 12020800 12020900 12021000 12021500 12021800 12022000 12022050 12022090 12022250 12022500 12023000 12023500 12024000 12024059 12024100 12024400 12024500 12024820 12025000 12025020 12025100 12025300 12025500 12025700 12026000 12026150 12026300 12026400 12026500 12026504 12026508 12026530 12026533 12026535 12026540 12026542 12026550 2026560 2026570 12026600 12026615 12026700 12027000

Station Name

CHEHALIS RIVER NEAR DOTY, WASH.
ELK CREEK NEAR DOTY, WASH
CHEHALIS RIVER AT DRYAD, WASH.
SOUTH FORK CHEHALIS RIVER NEAR WILDWOOD, WA SOUTH FORK CHEHALIS RIVER NEAR BOISTFORT, WASH. SOUTH FORK CHEHALIS R AT BOISTFORT, WASH
HALFWAY CREEK NR BOISTFORT WA
CHEHALIS RIVER NEAR ADNA, WA
BUNKER CREEK NR ADNA, WA
DEEP CK. ABV. CARSON CK. NR. BUNKER
DEEP CK. NR. MOUTH NR. BUNKER
CHEHALIS RIVER AT ADNA, WASH
STEARNS CREEK NR NAPAVINE, WA
STEARNS CREEK NEAR ADNA, WASH
CHEHALIS RIVER NR CHEHALIS, WASH.
SOUTH FORK NEWAUKUM RIVER NEAR ONALASKA, WASH
CARLISLE LAKE AT ONALASKA, WASH
S.F. NEWAUKUM RIVER AT FOREST, WASH.

NORTH FORK NEWAUKUM RIVER AB BEAR CR NR FOREST, WA NORTH FORK NEWAUKUM RIVER NEAR FOREST, WASH.
N.F. NEWAUKUM RIVER AT FOREST, WASH

NEWAUKUM RIVER NR CHEHALIS, WASH
NEWAUKUM RIVER AT CHEHALIS, WASH.
CHEHALIS RIVER AT WWTP AT CHEHALIS, WA
SALZER CREEK NEAR CENTRALIA, WASH CHEHALIS RIVER AT CENTRALIA, WASH SKOOKUMCHUCK RIVER NEAR VAIL, WASH SKOOKUMCHUCK RIVER NEAR CENTRALIA, WASH SKOOKUMCHUCK R BLW BLDY RN CR N CENTRALIA, WASH. SKOOKUMCHUCK R TRIBUTARY NEAR BUCODA, WASH
SKOOKUMCHUCK RIVER NEAR BUCODA, WASH.
HANAFORD CREEK NR CENTRALIA, WA
HANAFORD CK. ABV. COAL CK. NR. BUCODA HANAFORD CREEK ABV SNYDER CREEK NR BUCODA, WASH. HANAFORD CK BLW. SNYDER CK NR. BUCODA PACKWOOD CK. ABV. MINING SITE NR. KOPIAH PACKWOOD CREEK NEAR BUCODA, WASH. PACKWOOD CK. ABV. STEAMPLANT NR. BUCODA HANAFORD CR BLW PACKWOOD CR NEAR BUCODA, WASH. HANAFORD CREEK NEAR BUCODA, WASH. SOUTH HANAFORD CK NR. KOPIAH SOUTH HANAFORD CK. NR. CENTRALIA SKOOKUMCHUCK RIVER AT CENTRALIA, WASH BORST LAKE AT CENTRALIA, WASH. CHEHAL S RIVER AT GALVIN WASH LINCOLN CREEK NEAR ROCHESTER, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC
463703	1231635	17100103
463742	1231950	17100103
463754	1231451	17100103
462642	1230457	17100103
463138	1230658	17100103
463245	1230755	17100103
463135	1230855	17100103
463733	1230602	17100103
463905	1230730	17100103
464212	1230705	17100103
463909	1230648	17100103
463742	1230335	17100103
463440	1225900	17100103
463550	1230010	17100103
463830	1230055	17100103
463433	1224102	17100103
463441	1224334	17100103
463614	1225115	17100103
464003	1224608	17100103
463920	1224640	17100103
463631	1225105	17100103
463713	1225638	17100103
463901	1225846	--
463940	1225858	17100103
464130	1225425	17100103
464245	1225839	17100103
464622	1223534	17100103
464715	1224245	17100103
464725	1224403	17100103
464740	1225345	17100103
464620	1225523	17100103
464450	1224640	17100103
464406	1224452	17100103
464517	1224800	17100103
464547	1224902	17100103
464309	1224734	17100103
464457	1224911	17100103
464517	1225002	17100103
464532	1225039	17100103
464544	1225347	17100103
464143	1225008	17100103
464532	1225359	17100103
464352	1225710	17100103
464320	1225835	17100103
464408	1230107	17100103
464410	1231040	17100103

Drainage
Area
(Miles2)
113
46.7
--
27
44.9
48
13.4
--
20.1
--
--
14.1
--
434
42.4
--
--
31.5
--
155
--
--
12.6
--
40
61.7
65.9
0.58
112
13.3
--
--
--
--
7.93
--
--
14.4
172
--
19.3

Site - ID 12027100 12027220 12027500 12027550 12028000 12028050 12028070 12028500 12029000 12029015 12029050 12029060 12029150 12029200 12029202 12029210 12029500 2029700 12030000 12030500 12030550 12030900 12030950 12031000 12031890 12032000 12032500 12033000 12033305 2033500 12034000 12034200 12034500 12034700 12034800 12035000 12035002 12035100 12035380 12035400 12035450 12035500 12036000 12036400 12036500 12036650

Station Name

LINCOLN CK. ABV. SPONENBERGH CK. NR. GALVIN LINCOLN CK. NR. GALVIN
CHEHALIS RIVER NEAR GRAND MOUND, WASH PRAIRIE CREEK NEAR GRAND MOUND, WASH. SCATTER CREEK NEAR GRAND MOUND, WASH SCATTER CREEK NEAR ROCHESTER, WASH CHEHALIS R AT INDIAN RESV NR OAKVILLE, WASH. WADELL CREEK NR LITTLE ROCK, WA
BLACK RIVER AT LITTLE ROCK, WASH
DEEP LAKE NEAR MAYTOWN, WASH.
SCOTT LAKE NEAR MAYTOWN, WASH.
BEAVER CREEK AT LITTLEROCK, WA
MILL CREEK NEAR MOUTH NEAR LITTLEROCK, WA BLACK RIVER NEAR OAKVILLE, WASH
WILLAMETTE CREEK NEAR OAKVILLE, WASH.
BLACK RIVER NEAR MOUTH NEAR OAKVILLE, WASH.
GARRARD (GARROD) CR NR OAKVILLE, WA
CHEHALIS RIVER NEAR OAKVILLE, WASH.
ROCK CREEK AT CEDARVILLE, WASH. CEDAR CREEK NEAR OAKVILLE, WASH. GIBSON CREEK NEAR PORTER, WASH. PORTER CREEK AT PORTER, WASH. PORTER CR AT U.S. HWY 12 AT PORTER, WA CHEHALIS RIVER AT PORTER, WASH. EAST FORK WILDCAT CREEK AT MCCLEARY, WASH WILDCAT CREEK NEAR ELMA, WA
CLOQUALLUM RIVER AT ELMA, WASH
CHEHALIS RIVER AT SOUTH ELMA, WASH CHEHALIS RIVER ABV SATSOP RIVER AT FULLER, WASH EAST FORK SATSOP RIVER NR MATLOCK, WASH. BINGHAM CR NR MATLOCK, WASH EAST FORK SATSOP RIVER NEAR ELMA, WASH MIDDLE FORK SATSOP RIVER NEAR SATSOP, WASH. WEST FORK SATSOP RIV TRIBUTARY NR MATLOCK, WASH. WEST FORK SATSOP RIVER NEAR SATSOP, WASH. SATSOP RIVER NEAR SATSOP, WA CHEHALIS RIVER NEAR SATSOP,WASH. CHEHALIS RIVER NEAR MONTESANO, WA WYNOOCHEE LAKE NEAR GRISDALE, WA WYNOOCHEE RIVER NR GRISDALE, WA BIG CREEK NEAR GRISDALE, WASH WYNOOCHEE RIVER AT OXBOW, NR ABERDEEN, WASH. WYNOOCHEE RIVER ABV SAVE CREEK, NR ABERDEEN, WA SCHAFER CREEK NEAR GRISDALE, WASH WYNOOCHEE RIVER NEAR MONTESANO, WASH. ANDERSON CREEK NEAR MONTESANO, WASH

Latitude	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage (Degrees) (Miles2)
464536	1230549	17100103	--
464429	1230240	17100103	--
464634	1230204	17100103	895
464725	1230115	17100103	--
464950	1225935	17100103	--
464900	1230400	17100103	36.2
464834	1230816	17100103	--
465450	1230300	17110010	15.9
465410	1230120	17100103	63.7
465433	1225454	17100103	--
465519	1225553	17100103	--
465353	1230106	17100103	--
465347	1230544	17100103	--
464900	1231100	17100103	130
464917	1231126	17100103	--
464918	1231228	17100103	--
464845	1231505	17110010	27.7
464951	1231531	17100103	1160
465205	1231825	17100103	24.8
465230	1231615	17100103	38.2
465415	1231725	17100103	6.96
465700	1231730	17100104	35.3
465615	1231835	17100104	39.8
465617	1231845	17100103	1290
470351	1231557	17100104	4.45
470130	1232110	17100104	19.8
470017	1232311	17100104	64.9
465856	1232440	17100106	1420
465843	1232842	17100104	--
470945	1232200	17100104	23.7
470940	1232345	17100104	--
470740	1232500	17100104	65.9
470510	1232920	17100104	--
471850	1233525	17100104	0.33
470233	1233126	17100104	94.9
470003	1232937	17100104	299
465753	1233115	17100104	1760
465745	1233612	17100104	1780
472308	1233616	17100104	--
472250	1233631	17100104	41.3
472228	1233808	17100104	9.57
472000	1233900	17100104	70.7
471757	1233907	17100104	74.1
470702	1233650	17100104	12.1
1233730	17100104	112	
1233917	17100104	2.72	

Site - ID 12036800 12037000 12037400 12037500 12038000 12038005 12038100 12038400 12038500 12038510 12038750 12039000 12039003 12039005 12039050 12039100 12039220 12039300 12039400 12039500 12039520 12039900 12040000 12040002 12040500 12040600 12040680 12040700 12040900 2040910 2040930 12040940 12040950 12040960 12040965 12040985 12040990 12041000 12041040 12041100 12041110 12041120 12041130 12041140 12041160 12041170

Station Name

WYNOOCHEE RIV BLW HELM CR NR MONTESANO, WASH CTY,ABERDEEN WYNOOCHEE R INTAKE NR MONTESANO, WA WYNOOCHEE RIVER ABOVE BLACK CR NR MONTESANO, WA WYNOOCHEE RIV BLW BLACK CR NR MONTESANO, WASH. WISHKAH RIVER NEAR WISHKAH, WASH.
WISHKAH RIV ABV EAST FORK NR ABERDEEN, WASH. WISHKAH RIVER AB WISHKAH ROAD NEAR WISHKAH, WA CHEHALIS RIVER BLW WISHKAH RIVER AT HOQUIAM, WA WEST FORK HOQUIAM RIVER NEAR HOQUIAM, WASH. W F HOQUIAM RIV BLW POLSON CR NR HOQUIAM, WASH. GIBSON CREEK NEAR QUINAULT, WASH
HUMPTULIPS RIVER NEAR HUMPTULIPS, WASH. HUMPTULIPS RIVER AT HUMPTULIPS, WASH. HUMPTULIPS RIVER BELOW HWY 101 NR HUMPTULIPS, WA BIG CREEK NEAR HOQUIAM, WASH.
BIG CREEK TRIBUTARY NEAR HOQUIAM, WASH
MOCLIPS RIVER AT MOCLIPS, WASH
NORTH FORK QUINAULT R NEAR AMANDA PARK, WASH. HIGLEY CREEK NEAR AMANDA PARK, WASH. QUINAULT RIVER AT QUINAULT LAKE, WASH RAFT RIVER BLW RAINY CR NEAR QUEETS, WASH. QUEETS RIVER ABV CLEARWATER RIV NR QUEETS, WASH CLEARWATER RIVER NR CLEARWATER, WASH. CLEARWATER RIVER NR QUEETS, WASH. QUEETS RIVER NEAR CLEARWATER, WASH QUEETS RIVER AT QUEETS, WASH. LAKE HOH NEAR FORKS, WA
HOH RIVER BELOW MT. TOM CREEK NEAR FORKS, WASH. SOUTH FORK HOH RIVER NEAR FORKS, WASH HOH RIVER AT MILE 30.0 NEAR FORKS, WASH. HOH RIVER AT MILE 28.4 NEAR FORKS, WASH CANYON CREEK AT MOUTH NEAR FORKS, WASH. OWL CREEK NEAR FORKS, WA
OWL CREEK AT MOUTH NR FORKS, WASH
SPRUCE CREEK AT MOUTH NR FORKS, WASH
MAPLE CREEK AT MOUTH NR FORKS, WASH.
DISMAL CREEK AT MOUTH NR FORKS, WASH.
HOH RIVER NEAR FORKS, WASH
HOH RIVER AT RIVER MILE 24.0 NR FORKS, WASH.
HOH RIVER AT MILE 20.0 NR FORKS, WASH
WILLOUGHBY CREEK AT MOUTH NR FORKS, WASH.
ELK CREEK AT MOUTH NR FORKS, WASH.
HOH RIVER AT MILE 18.0 NR FORKS, WASH.
ALDER CREEK AT MOUTH NR FORKS, WASH.
WINFIELD CREEK NEAR FORKS, WA
WINFIELD CREEK AT MOUTH NR FORKS, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
470444	1234157	17100104
470100	1234115	17100104
470042	1233915	17100104
470035	1233900	17100104
470635	1234720	17100105
470420	1234609	17100104
470420	1234610	17100104
465819	1234825	17100104
470305	1235525	17100105
470324	1235535	17100105
472830	1234150	17100105
471342	1235623	17100105
471348	1235738	17100105
471354	1235822	17100105
470840	1235310	17100105
470855	1235310	17100105
471432	1241127	17100102
473546	1233723	17100102
472055	1235345	17100102
472728	1235317	17100102
472717	1241858	17100102
473258	1241635	17100102
473500	1241740	17100102
473445	1241800	17100102
473217	1241852	17100102
473230	1241955	17100102
475400	1234706	17100101
475207	1235302	17100101
474825	1235943	17100101
474856	1240150	17100101
474837	1240333	17100101
474844	1240412	17100101
474657	1240443	17100101
474817	1240439	17100101
474819	1240448	17100101
474814	1240517	17100101
474821	1240525	17100101
474825	1241500	17100101
474844	1240728	17100101
474919	1241134	17100101
474919	1241146	17100101
474856	1241254	17100101
474843	1241329	17100101
474843	1241342	17100101
474753	1241334	17100101
474836	1241350	17100101

Drainage
Area
(Miles2)
133
$\stackrel{-}{155}$
180
57.8
--
2110
--
1.16

130
0.56
0.15
35
74.1
0.77

264
--
140
143
445

--
--
97

97.8
50.4
\qquad
\qquad
9.63
--

208
--
--
--
--
--
--

118

Site - ID 12041200 12041206 12041209 12041212 12041214 12041217 12041220 12041223 12041226 12041230 12041234 12041250 12041350 12041500 12041600 12042000 12042300 12042400 12042500 12042503 12042700 12042800 12042900 12042920 12043000 12043003 12043015 12043080 12043100 12043101 12043103 12043120 12043123 12043125 12043149 12043150 12043156 12043159 12043163 12043173 12043176 12043186 12043190 12043195 12043270 12043300

Station Name

HOH RIVER AT U.S. HIGHWAY 101 NEAR FORKS, WASH. HOH RIVER AT MILE 12.0 NR FORKS, WASH. LOST CREEK AT MOUTH NR FORKS, WASH. HOH RIVER AT MILE 8.9 NR FORKS, WASH HOH RIVER AT MILE 6.7 NR FORKS, WASH NOLAN CREEK AT HWY 101 BRIDGE NR FORKS, WASH. BRADEN CREEK AT HWY 101 BRIDGE NR FORKS, WASH HOH RIVER AT MILE 4.3 NR FORKS, WASH HOH RIVER AT MILE 2.3 NR FORKS, WASH CHALAAT CR.AT TREATMENT PLANT, HOH RESV, WASH CHALAAT CR.AT COMM.CENTER, HOH RESV, WASH HOH RIVER AT MILE 0.6 NR FORKS, WASH ROUND LAKE NEAR FORKS, WA
SOLEDUCK RIVER NEAR FAIRHOLM, WASH. SOLDUCK RIVER TRIBUTARY NEAR FAIRHOLM, WASH. SOLEDUCK R NEAR BEAVER, WASH SOLEDUCK RIVER NEAR FORKS, WASH SOLEDUCK R AT HWY 101 AT FORKS, WASH SOLEDUCK R NR QUILLAYUTE, WASH. SOLEDUCK R AT MOUTH NR LA PUSH, WASH. MAY CREEK NEAR FORKS, WASH. BOGACHIEL R NR FORKS, WASH. GRADER CREEK NEAR FORKS WASH SITCUM RIVER TRIBUTARY NEAR FORKS, WASH. CALAWAH R NR FORKS, WASH CALAWAH R AT MOUTH NR FORKS, WASH BOGACHIEL R NR LAPUSH, WASH EAST FORK DICKEY RIVER NEAR LA PUSH, WASH. DICKEY R NR LA PUSH, WASH.
DICKEY R AB COLBY CR NR LA PUSH, WASH DICKEY RIVER AT MORA, WASH. QUILLAYUTE RIVER AT LAPUSH, WASH. QUILLAYUTE R. AT RIVER MILE 0.2 AT LAPUSH, WASH QUILLAYUTE R. AT RIVER MILE 0.0 AT LAPUSH, WASH OZETTE LAKE AT OZETTE, WASH OZETTE RIVER AT OZETTE,WASH SOOES RIVER AB PILCHUCK CR NR OZETTE,WASH PILCHUCK CREEK NEAR OZETTE,WASH SOOES R BIW MILLER CR NR OZETTE WASH WAATCH R BLW EDUCKET CR AT NEAH BAY,WASH WAATCH RIVER AT NEAH BAY,WASH
VILLAGE CR AT NEAH BAY,WASH
SAIL RIVER NR NEAH BAY,WASH
SEKIU RIVER NEAR SEKIU, WASH. HOKO RIVER TRIB NR SEKIU, WASH HOKO RIVER NR SEKIU, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
474825	1241459	17100101	253
474712	1241647	17100101	--
474701	1241702	17100101	--
474545	1241851	17100101	--
474507	1242005	17100101	--
474507	1241916	17100101	8.35
474422	1242051	17100101	--
474410	1242159	17100101	--
474450	1242346	17100101	--
474432	1242458	17100101	--
474445	1242520	17100101	--
474458	1242543	17100101	--
474557	1234715	17100101	--
480240	1235728	17100101	83.8
480245	1235735	17100101	0.42
480400	1240550	17100101	116
480115	1242255	17100101	--
475901	1242348	17100101	--
475705	1242758	17100101	219
475455	1243227	17100101	--
475255	1242100	17100101	2.03
475340	1242119	17100101	111
475540	1242425	17100101	1.67
475719	1241211	17100101	0.42
475737	1242330	17100101	129
475604	1242649	17100101	--
475411	1243239	17100101	--
475910	1243245	17100101	39.8
475755	1243250	17100101	86.3
475724	1243332	17100101	86.3
475520	1243705	17100101	108
475502	1243803	17100101	--
475436	1243817	17100101	--
475435	1243826	17100101	--
480912	1244005	17100101	--
480913	1244004	17100101	77.5
481444	1243713	17100101	--
481355	1243735	17100101	--
481556	1243728	17100101	32
482126	1243730	17110021	9.96
482123	1243757	17110021	--
482211	1243738	17110021	--
482127	1243338	17110021	5.42
481638	1242659	17110020	22
481214	1242508	17100101	0.67
481430	1242257	17110021	51.2

Site - ID 12043304 12043330 12043350 12043365 12043400 12043430 12043450 12043470 12043500 12044000 12044500 12044600 12044610 12044615 12044675 12044680 12044685 12044690 12044695 12044790 12044800 12044825 12044850 12044900 12044910 12044915 12044920 12044930 12044940 12044950 12045000 12045100 12045150 12045200 12045500 12045520 12045535 12045550 12045560 12045590 2045900 12046000 12046090 12046100 12046250 12046260

Station Name

HOKO R ABV LITTLE HOKO R NR SEKIU
HOKO R NR SEKIU
CLALLAM RIVER NEAR CLALLAM BAY, WASH.
PYSHT R NR SAPPHO, WASH
PYSHT R NR PYSHT
EAST TWIN RIVER NEAR PYSHT, WASH.
CROSS CR NR FAIRHOLM, WASH.
LAKE CRESCENT TRIBUTARY NEAR PIEDMONT, WA HAPPY LAKE NEAR PIEDMONT, WA
LYRE RIVER AT PIEDMONT, WASH
SALT CREEK NEAR PORT ANGELES, WA
ELWHA RIVER AB SLATE CR NR PORT ANGELES, WA SLATE CREEK NEAR PORT ANGELES, WA BUCKINGHORSE CREEK NEAR PORT ANGELES, WA GODKIN CREEK NEAR PORT ANGELES, WA ELWA RIVER AT CAMP WILDER NEAR PORT ANGELES, WA LEITHA CREEK NEAR PORT ANGELES, WA
UNNAMED TRIB NR CAMP WILDER NR PORT ANGELES, WA HAYES RIVER NR HAYES RS NR PORT ANGELES, WA LOST RIVER NEAR ELKHORN RS NEAR PORT ANGELES, WA ELWA RIVER AT ELKHORN RS NEAR PORT ANGELES, WA LILLIAN RIVER AT SHELTER NEAR PORT ANGELES, WA ELWHA RIVER NEAR GOBLINS GATE NR PORT ANGELES, WA ELWHA RIVER ABOVE LAKE MILLS NEAR PORT ANGELES, WA ELWHA R DELTA SITE 1 AT LAKE MILLS NR PORT ANGELES HURRICANE CREEK NEAR PORT ANGELES, WA ELWHA R DELTA SITE 2 AT LAKE MILLS NR PORT ANGELES CRYSTAL CREEK NEAR OLYMPIC HOT SPRINGS, WA COUGAR CREEK NEAR OLYMPIC HOT SPRINGS, WA BOULDER CREEK NEAR PORT ANGELES, WA LAKE MILLS AT GLINES CANYON, NEAR PORT ANGELES, WA LAKE MILLS PWRPLT TLWTR GAGE NR PORT ANGELES, WA. GRIFFIN CREEK AT ELWA RS NEAR PORT ANGELES, WA ELWHA RIVER AT ALTAIRE BRIDGE NEAR PORT ANGELES ELWHA RIVER AT MCDONALD BR NR PRT ANGELES, WASH LITTLE RIVER NEAR PORT ANGELES, WA COWEN CREEK NEAR PORT ANGELES, WA LITTLE R AT OLY HOT SPRINGS RD NR PORT ANGELES, WA ELWHA R BLW LITTLE R NR PORT ANGELES UNNAMED TRIB TO INDIAN CREEK NEAR PORT ANGELES, WA LAKE ALDWELL NEAR PORT ANGELES, WA ELWHA RIVER NEAR PORT ANGELES, WA UNNAMED TRIB AT HIGHWAY 112 NEAR PORT ANGELES, WA ELWHA RIVER BELOW ELWHA DAM NEAR PORT ANGELES,WA ELWHA R AT OLD HWY 112 BRIDGE NR PORT ANGELES, WA ELWHA RIVER AT DIVERSION NEAR PORT ANGELES, WA

Latitude (Degrees)	Longitude (Degrees)
481524	1242110
481628	1242119
481325	1241510
481015	1241240
481123	1240923
480949	1235633
480320	1235235
480300	1234805
480033	1234109
480535	1234730
480740	1234040
474434	1232922
474436	1232926
474442	1232855
474535	1232723
474559	1232734
474558	1232730
474637	1232706
474836	1232644
475145	1232754
475218	1232813
475616	1233101
475722	1233424
475813	1233522
475823	1233518
475834	1233507
475835	1233524
475843	1234106
475917	1233922
475854	1233608
480008	1233555
480016	1233554
480058	1233522
480039	1233521
480318	1233455
480326	1233013
480210	1232957
480348	1233416
480356	1233435
480341	1233556
480542	1233322
480540	1233320
480558	1233246
480620	1233306
480650	1233307
480653	1233307

Hydrologic	Area
Unit (OWDC)	(Miles2)
17110021	--
17110021	--
17110021	137
17110021	10.2
17110021	--
17110021	14
17110021	0.92
17110021	0.79
17110021	--
17110021	48.6
17110021	8.31
17110021	--
--	--
--	--
--	--
--	--
--	--
--	--
--	--
--	--
--	--
--	--
17110020	--
17110020	198
17110020	--
--	--
17110020	--
--	--
--	--
--	--
17110020	--
17110020	245
--	--
17110020	--
17110020	269
--	--
--	--
--	--
17110020	--
--	--
17110020	315
17110020	315
--	--
17110020	--
---	--
17110020	

Site - ID 12046300 12046390 12046400 12046500 12046510 12046520 12046523 12046526 12046800 12047000 12047100 12047150 12047300 12047500 12047550 12047650 12047700 12048000 12048050 12048500 12048550 12048600 12048650 12048700 12048750 12048800 12049000 12049020 12049040 12049080 12049200 12049400 12049500 12050000 12050500 12051000 12051100 12051200 12051450 12051500 12051530 12051550 12051590 12051595 12051600 2051700

Station Name

ELWHA RIVER DIVERSION BL ELWHA DAM NR PORT ANGELES ELWHA RIVER DIVERSION TO FISH POND NR PORT ANGELES ELWHA RIVER DIVESION CANAL NEAR PORT ANGELES, WA ELWHA RIVER BELOW DIVERSION NEAR PORT ANGELES, WA ELWHA R NR MOUTH NR PORT ANGELES WASH
WEST SLOUGH AT ANGELES PT NR PORT ANGELES, WA BOSCO CR NR PORT ANGELES, WASH
EAST SLOUGH AT ANGELES PT NR PORT ANGELES, WA EAST VALLEY CREEK AT PORT ANGELES, WASH.
ENNIS CREEK NEAR PORT ANGELES, WA
LEES CREEK AT PORT ANGELES, WASH
PJ LAKE NEAR PORT ANGELES, WA
MORSE CREEK NEAR PORT ANGELES, WASH.
SIEBERT CREEK NEAR PORT ANGELES, WASH
SIEBERT CR AT MOUTH NEAR AGNEW, WASH
MCDONALD CREEK NEAR AGNEW, WASH
GOLD CREEK NR BLYN, WASH.
DUNGENESS RIVER NEAR SEQUIM, WASH. CANYON CREEK NEAR SEQUIM, WÁSH. DUNGENESS RIVER BELOW CANYON CREEK, NR SEQUIM, WA DUNGENESS R AT DUNGENESS MEADOWS NR CARLSBORG, WA DUNGENESS R AT HWY 101 BR NR CARLSBORG
DUNGENESS RIVER AT RR BRIDGE NEAR SEQUIM WA DUNGENESS R AT WOODCOCK BRIDGE NR DUNGENESS, WA HURD CREEK NEAR DUNGENESS, WASH. MATRIOTTI CREEK NEAR DUNGENESS, WASH DUNGENESS RIVER AT DUNGENESS, WASH. MEADOWBROOK CREEK AT DUNGENESS, WASH. CASSALERY CREEK NEAR DUNGENESS, WASH. GIERIN CREEK NEAR SEQUIM, WASH. BELL CREEK NEAR SEQUIM, WASH DEAN CREEK AT BLYN, WASH. JIMMYCOMELATELY CREEK NEAR BLYN, WA SALMON CREEK NEAR MAYNARD, WA SNOW CREEK NEAR MAYNARD, WASH ANDREWS CREEK NEAR MAYNARD, WA SNOW CR AT UNCAS, WASH CHEVY CHASE CR AT S. DISCOVERY RD NR IRONDALE, WA CHIMACUM CR BLW W. VALLEY RD AT CENTER, WA CHIMACUM CREEK NR CHIMACUM, WASH CHIMACUM CR. AT HADLOCK
CHIMACUM CR ABV IRONDALE RD AT IRONDALE, WA LUDLOW CREEK ABOVE FALLS NEAR PORT LUDLOW, WA SHINE CREEK BELOW STATE HIGHWAY 104 NEAR SHINE, WA THORNDYKE CR AT THORNDYKE RD NR SOUTH POINT, WA TARBOO CREEK AT DABOB ROAD NEAR DABOB, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainag Area (Miles2)
480658	1233306	17110020	--
480654	1233258	17110020	--
480654	1233304	17110020	--
480655	1233310	17110020	318
480841	1233350	17110020	--
480900	1233328	17110020	--
480840	1233317	17110020	--
480857	1233246	17110020	--
480610	1232620	17110020	0.69
480625	1232340	17110020	8.32
480620	1232255	17110020	4.77
475647	1232429	17110020	--
480217	1232057	17110020	46.6
480500	1231652	17110020	15.5
480709	1231715	17110020	--
480730	1231302	17110020	22.9
475515	1230230	17110020	2.28
480052	1230753	17110020	156
480126	1230815	17110020	11.9
480230	1230845	17110020	170
480343	1230910	17110020	--
480434	1230858	17110020	178
480508	1230847	17110020	--
480658	1230854	17110020	--
480721	1230827	17110020	--
480812	1230839	17110020	13.6
480840	1230740	17110020	197
480840	1230721	17110020	0.53
480738	1230557	17110020	3.19
480615	1230428	17110020	3.49
480501	1230319	17110020	8.86
480130	1230035	17110020	2.96
480040	1230005	17110020	18.3
475850	1225340	17110020	13
475625	1225310	17110020	11.2
475635	1225300	17110020	10.2
475915	1225305	17110020	--
480350	1225012	17110020	-
475653	1224754	17110019	9.38
475827	1224635	17110019	13.8
480151	1224632	17110019	--
480232	1224652	17110019	--
475502	1224252	17110019	--
475235	1224232	17110019	--
474926	1224420	17110019	--
475208	1224858	17110019	11.3

Site - ID
12051750 12051900 12052000 12052200 12052210 12052390 12052400 12052500 12052800 12053000 12053400 12053500 12054000 12054100 12054500 12054600 12055000 12055500 12056000 12056300 12056400 12056495 12056500 12057000 12057500 12058000 12058500 12058600 12058605 12058800 2059000 12059300 12059500 12059800 12059900 12060000 12060100 12060500 12060995 12061000 12061200 12061500 12062500 12062505 12063000 12063500

Station Name
DONOVAN CREEK NEAR QUILCENE, WA
LITTLE QUILCENE RIVER BLW DIVERSION NR QUILCENE,WA LITTLE QUILCENE RIVER NR QUILCENE, WASH.
BIG QUILCENE RIVER ABOVE DIVERSION NR QUILCENE, WA BIG QUILCENE RIVER BELOW DIVERSION NR QUILCENE, WA BIG QUILCENE RIVER ABOVE PENNY CR NR QUILCENE, WA PENNY CREEK NEAR QUILCENE, WASH. BIG QUILCENE RIVER NR QUILCENE, WN LAKE CONSTANCE NEAR BRINNON, WA DOSEWALLIPS RIVER NR BRINNON, WASH. DOSEWALLIPS R TRIBUTARY NEAR BRINNON, WASH. DOSEWALLIPS R. AT BRINNON
DUCKABUSH RIVER NEAR BRINNON, WASH
DUCKABUSH R. AT BRINNON
HAMMA HAMMA RIVER NEAR ELDON, WASH
JEFFERSON CREEK NEAR ELDON, WASH.
HAMMA HAMMA R N HOODSPORT WASH
EAGLE CREEK NEAR LILLIWAUP, WA
FINCH CREEK AT HOODSPORT WA
ANNAS BAY TRIBUTARY NEAR POTLATCH, WASH
UPPER FLAPJACK LAKE NEAR HOODSPORT, WA
NF SKOKOMISH R AT STAIRCASE RPDS, NR HOODSPORT, WA NF SKOKOMISH R BLW STRCSE RPDS NR HDSPRT, WASH LAKE CUSHMAN NR HOODSPORT
NORTH FORK SKOKOMISH RIVER NR HOODSPORT, WASH DEER MEADOW CREEK NEAR HOODSPORT, WASH
DOW CREEK NEAR HOODSPORT, WASH.
LOWER LAKE CUSHMAN NR HOODSPORT
PENSTOCK AT POWERHOUSE NEAR POTLATCH, WA NF SKOKOMISH R. BL LWR CUSHMAN DAM NR POTLATCH, WA MCTAGGERT CREEK NEAR HOODSPORT, WASH. NF SKOKOMISH R BLW MCTAGGERT CR NR POTLACH, WASH N.F. SKOKOMISH RIVER NR POTLATCH, WA
S.F. SKOKOMISH RIVER NR HOODSPORT, WASH. S.F. SKOKOMISH R BLW LEBAR CR NR HOODSPORT S.F. SKOKOMISH RIVER NR POTLATCH, WASH. ROCK CR NR POTLATCH, WA
SOUTH FORK SKOKOMISH RIVER NEAR UNION, WASH.
VANCE CR NR CAMP GOVEY NR POTLATCH, WA
VANCE CREEK NEAR POTLATCH, WASH
FIR CREEK TRIBUTARY NEAR POTLATCH, WASH.
SKOKOMISH RIVER NEAR POTLATCH, WASH.
PURDY CREEK NEAR UNION, WASH.
WEAVER CR NR POTLATCH WASH
UNION RIVER NEAR BREMERTON, WASH.
UNION RIVER NEAR BELFAIR, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
475112	1225127	17110019	--
475230	1225730	17110018	--
475015	1225310	17110018	23.7
474707	1225846	17110018	49.4
474705	1225842	17110018	49.4
474832	1225443	17110018	59.7
474840	1225450	17110018	6.78
474839	1225434	17110018	66.4
474504	1230829	17110018	--
474335	1230030	17110018	93.5
474300	1225620	17110018	0.62
474125	1225352	17110018	116
474103	1230037	17110018	66.5
473857	1225601	17110018	--
473518	1230657	17110018	51.3
473500	1230618	17110018	21.6
473248	1230325	17110018	83.5
472910	1230440	17110018	7.06
472420	1230850	17110018	3.45
472050	1230935	17110018	0.82
473339	1232021	17110018	--
473112	1232001	17110017	--
473052	1231943	17110017	57.2
472525	1231320	17110017	93.7
472524	1231316	17110017	93.7
472456	1231336	17110017	1.83
472440	1231115	17110017	1.67
472352	1231157	17110017	--
472210	1230936	17110017	--
472327	1231230	17110017	--
472450	1231425	17110017	1.3
472122	1231405	17110017	--
471942	1231433	17110017	117
472645	1232454	17110017	26
472503	1231945	--	--
472310	1231830	17110017	65.6
472228	1231859	17110015	--
472026	1231644	17110017	76.3
471949	1231857	17110017	15.6
471945	1231848	17110017	--
472015	1231800	17110017	0.76
471836	1231033	17110017	227
471805	1231050	17110017	3.73
471835	1231055	--	--
473145	1224705	17110018	3.16
472820	1224940	17110018	19.8

Site - ID 12064000 12064500 12065000 12065020 12065500 12066000 12066500 12067000 12067500 12068000 12068500 12069000 12069500 12069550 12069600 12069651 12069660 12069663 2069710 12069720 12069721 12069731 12069760 12069995 12070000 12070040 12070045 12070050 12070455 12070500 12071000 12071500 12072000 12072400 12072500 12072600 12072615 12072630 12072675 12072681 12072685 12072710 12072750 12072770 12072795 12072800

Station Name

MISSION LAKE NR BREMERTON
MISSION CREEK NEAR BREMERTON, WASH
MISSION CREEK NR BELFAIR, WASH.
TIGER LAKE NR BELFAIR
GOLD CREEK NEAR BREMERTON, WASH.
TAHUYA RIVER NEAR BREMERTON, WASH PANTHER LAKE NR. BREMERTON
PANTHER CREEK NEAR BREMERTON, WASH.
TAHUYA RIVER NEAR BELFAIR, WASH.
TAHUYA RIVER NEAR TAHUYA, WASH.
DEWATTO RIVER NEAR DEWATTO, WASH.
ANDERSON CREEK NEAR HOLLEY, WA STAVIS CREEK NEAR SEABECK, WA BIG BEEF CREEK NEAR SEABECK, WASH. DEVILS HOLE CREEK NEAR BANGOR, WA GAMBLE CREEK NEAR PORT GAMBLE, WA PORT GAMBLE TRIB NO 2 NR PORT GAMBLE WASH PORT GAMBLE TRIB NO 3 AT PORT GAMBLE WASH GROVERS CREEK NEAR INDIANOLA WASH MILLER BAY TRIB NO 2 NR SUQUAMISH WASH MILLER BAY TRIB NO 3 NR SUQUAMISH WASH PORT ORCHARD TRIB NO 2 NR SUQUAMISH WASH PORT ORCHARD TRIB NO 4 AT KEYPORT WASH DOGFISH CR AT BIG VALLEY RD NR POULSBO, WA DOGFISH CREEK NEAR POULSBO, WASH. JOHNSON CREEK AT DNR SITE NEAR POULSBO, WA NORTH FORK JOHNSON CREEK NEAR POULSBO, WA JOHNSON CREEK NEAR POULSBO, WA ISLAND LAKE NR. KEYPORT
CLEAR CREEK NEAR SILVERDALE, WA WILDCAT LAKE NR. BREMERTON KITSAP LAKE NR. BREMERTON CHICO CREEK NEAR BREMERTON, WASH GORST CREEK NEAR MOUTH AT GORST, WA BLACKJACK CREEK AT PORT ORCHARD, WASH BEAVER CR NR MANCHESTER WASH. LONG LAKE NR PORT ORCHARD JUDD CR ON VASHON ISLAND NR VASHON, WA CRESCENT LAKE NR. GIG HARBOR CRESCENT CR NR GIG HARBOR WASH NORTH CREEK AT GIG HARBOR,WASH. ARTONDALE CREEK AT ARTONDALE,WASH. UNNAMED TRIB.TO CARR INLET AT ROSEDALE,WASH MCCORMICK CREEK AT PURDY,WASH PURDY CREEK NEAR PURDY WASH. PURDY CREEK AT PURDY,WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
473200	1225005	17110018
473200	1225005	17110018
472920	1225145	17110018
473035	1225007	17110018
473320	1224835	17110018
473300	1225050	17110018
473110	1225108	17110018
473150	1225130	17110018
472940	1225420	17110018
472420	1230020	17110018
472810	1230133	17110018
473405	1225740	17110018
473725	1225230	17110018
473827	1224702	17110018
474415	1224354	17110019
474757	1223451	17110018
475030	1223352	17110018
475116	1223358	17110018
474625	1223323	17110019
474449	1223332	17110019
474451	1223336	17110019
474245	1223419	17110019
474229	1223619	17110019
474558	1223820	17110019
474511	1223836	17110019
474436	1224039	17110018
474403	1223945	17110019
474400	1223942	17110019
474042	1223932	17110019
473950	1224050	17110019
473559	1224535	17110019
473447	1224234	17110019
473525	1224230	17110019
473141	1224158	17110019
473220	1223750	17110019
473415	1223330	17110019
472858	1223512	17110019
472421	1222810	17110019
472318	1223418	17110019
472102	1223444	17110019
472014	1223537	17110019
471755	1223704	17110019
471949	1223854	17110019
472216	1223721	17110019
472412	1223651	17110019
472318	1223730	17110019

Drainage Area (Miles2)
--
1.91
4.43
--
1.51
5.99
--
1
15
42.2
18.4
6.3
5.6
13.8
2.61
5.86
--
--
--
--
--
--
.08
0.17
2.04
2.52
--
8.5
--
-
15.3
--
14.5
1.61
--
--
--
--
--
--
--
3.44

Site - ID
12073000 12073490 12073500 12073505 12073550 12073585 12073600 12073890 12074000 12074500 12074780 12075000 12075500 12076000 12076100 12076500 12077000 12077490 2077500 2078000 12078200 12078400 12078500 12078600 12078650 12078700 12078705 2078720 12078730 12078940 2079000 12079004 12079300 12079380 2079500 12079550 12079900 12079980 12079994 12079996 2080000 12080010 12080012 12080025 12080070 12080090

Station Name

BURLEY CREEK AT BURLEY WASH
HUGE CREEK AT COUNTYLINE NEAR WAUNA, WASH. HUGE CREEK NEAR WAUNA, WASH.
HORSESHOE LAKE NR BURLEY TRIBUTARY TO BEAVER CREEK NR HERRON, WA
JACKSON LAKE NR. HOME
MASTIN CREEK NR KEY CENTER, WA WYE LAKE NEAR BELFAIR
SHUMOCHER CR (HD SHERWOOD CR) NR UNION, WA MASON LAKE NEAR UNION, WASH
PHILLIPS LAKE NR SHELTON
DEER CREEK NEAR SHELTON, WASH
CRANBERRY CREEK NEAR SHELTON, WASH
JOHNS CREEK NEAR SHELTON, WASH.
LOST LAKE NR SHELTON
GOLDSBOROUGH CREEK NEAR SHELTON, WASH
GOLDSBOROUGH CREEK AT SHELTON, WASH.
ISABELLA LAKE NR SHELTON
MILL CREEK AT SHELTON, WASH
SKOOKUM CREEK AT KAMILCHE, WASH
SUMMIT LAKE NR. KAMILCHE
KENNEDY CREEK NEAR KAMILCHE, WASH
KENNEDY CREEK NEAR NEW KAMILCHE, WA
SCHNEIDER CREEK TRIBUTARY NEAR SHELTON, WASH.
SNYDER CREEK NEAR OLYMPIA, WASH
BLACK LAKE NR. TUMWATER
BLACK LAKE DITCH AT LAKE OUTLET NR TUMWATER, WA.
BLACK LAKE DITCH NR OLYMPIA, WA.
PERCIVAL CREEK NR OLYMPIA, WA.
LAWRENCE LK NR RAINIER WASH
DESCHUTES RIVER NR RAINIER, WASH
DESCHUTES R AT HWY 507 NR RAINIER, WASH
MCINTOSH LAKE NR TENINO
OFFUTT LAKE NR EAST OLYMPIA
SPURGEON CREEK NEAR OLYMPIA, WA AYER CREEK NEAR TUMWATER, WA MUNN LAKE NR OLYMPIA
DESCHUTES R AT HENDERSON BLVD NR OLYMPIA, WA CHAMBERS LAKE NR OLYMPIA ,WASH
LITTLE CHAMBERS LK NR OLYMPIA,WASH
DESCHUTES RIVER NEAR OLYMPIA, WASH.
DESCHUTES R AT E ST BRIDGE AT TUMWATER, WASH DESCHUTES RIVER AT TUMWATER, WASH
CAPITOL LAKE AT OLYMPIA
WARD LAKE NEAR TUMWATER
INDIAN-MOXLIE CR AT UNION AVE AT OLYMPIA, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Area (Miles2)
472455	1223750	17110019	10.7
472412	1224210	17110019	--
472322	1224152	17110019	6.47
472433	1223934	17110019	--
471648	1224801	17110019	0.21
471710	1224619	17110019	--
472113	1224436	17110019	0.2
472525	1224537	17110019	--
471910	1225920	17110019	12.2
472114	1225517	17110019	20.2
471452	1225752	17110019	--
471600	1230015	17110019	13.6
471600	1230030	17110019	15.2
471500	1230515	17110019	17.7
470955	1231445	17110019	--
471256	1231052	17110019	39.3
471230	1230600	17110019	55
471002	1230658	17110019	--
471145	1230545	17110019	19.5
470730	1230650	17110019	16.1
470312	1230720	17110019	--
470437	1230733	17110019	17.4
470530	1230545	17110019	18.7
470525	1230430	17110019	1.12
470509	1225824	17110019	0.52
470036	1225750	17100103	--
470037	1225750	17110019	--
470139	1225618	17110019	--
470132	1225552	17110019	5.84
465057	1223451	17110016	--
465108	1224003	17110016	89.8
465223	1224344	17110016	101
465144	1224636	17110016	--
465506	1224904	17110016	--
465700	1225030	17110016	11
465829	1225140	17110016	--
465914	1225242	17110016	--
465944	1225247	17110016	--
470121	1225004	17110016	--
470105	1224956	17110016	--
470005	1225340	17110016	160
470043	1225407	17110016	162
470053	1225407	17110016	--
470237	1225429	17110019	--
470021	1225235	17110016	--
470224	1225326	17110019	--

Site - ID 12080092 12080100 12080450 12080500 12080550 12080560 12080570 12080600 12080650 12080670 12080750 12081000 12081010 12081300 12081480 12081500 12081590 12081595 12081700 12081900 12081910 12081990 12082000 12082500 12082990 12083000 12083400 12083500 12084000 12084500 12085000 12085500 12086000 12086100 12086500 12087000 12087300 12087400 12087500 12088000 12088020 12088300 12088400 12088500 12088900 12089000

Station Name

INDIAN-MOXLIE CR OUTFALLAT OLYMPIA, WA MISSION CREEK AT MOUTH NR OLYMPIA, WA WOODWARD CR AT ENSIGN ROAD AT OLYMPIA, WA WOODWARD CREEK NR OLYMPIA, WA
HICKS LAKE NEAR LACEY
WOODLAND CR AT PATTERSON LAKE INLET NR LACEY, WA PATTERSON LAKE NR LACEY
LONG LAKE NR. LACEY
WOODLAND CREEK AT LONG LAKE OUTLET NR LACEY, WA
WOODLAND CREEK AT MARTIN WAY AT LACEY, WA
WOODLAND CR AT DRAHAM RD NR OLYMPIA, WA
WOODLAND CR NR OLYMPIA, WA
WOODLAND CR TRIBUTARY AT JORGENSON RD NR OLYMPIA EATON CREEK NEAR YELM, WASH
ST. CLAIR LAKE NEAR YELM, WA
MCALLISTER SPRINGS NEAR OLYMPIA, WASH. NISQUALLY R. ABV. DEAD HORSE CR. AT PARADISE, WA NISQUALLY R. ABV. GLACIER BRIDGE AT PARADISE, WA PARADISE RIVER AT PARADISE, WA
KAUTZ CREEK (UPPER SITE) NEAR LONGMIRE, WA
KAUTZ CREEK (LOWER SITE) NEAR LONGMIRE, WA
TAHOMA CREEK AT HWY BRIDGE NR ASHFORD
NISQUALLY RIVER NEAR ASHFORD, WA
NISQUALLY RIVER NEAR NATIONAL, WASH.
MINERAL LAKE AT MINERAL
MINERAL CREEK NEAR MINERAL, WASH
NISQUALLY R AT ELBE, WASH
EAST CREEK NR ELBE WASH
NISQUALLY RIVER NEAR ALDER, WASH.
LITTLE NISQUALLY RIVER NEAR ALDER, WASH.
ALDER RESV AT ALDER WASH
LA GRANDE RESERVOIR AT LA GRANDE, WA
NISQUALLY RIVER AT LA GRANDE DAM, WA
TACOMA POWER CONDUIT AT LA GRANDE DAM, WA
NISQUALLY RIVER AT LA GRANDE, WASH.
MASHEL RIVER NEAR LA GRANDE, WASH.
CLEAR LAKE NR. PARADISE
OHOP LAKE NEAR EATONVILLE, WASH.
LYNCH CREEK NEAR EATONVILLE, WA
OHOP CREEK NEAR EATONVILLE, WA
OHOP CREEK AT SR7 NEAR EATONVILLE, WA SILVER LAKE NR. LA GRANDE
NISQUALLY R ABV POWELL C NR MCKENNA, WASH
NISQUALLY RIVER NEAR MCKENNA, WASH.
TANWAX LAKE NEAR KAPOWSIN, WASH
TANWAX CREEK NR MCKENNA, WASH.

Latitude	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
470252	1225335	17110019	--
470402	1225343	17110019	--
470304	1225106	17110019	--
470501	1225134	17110019	3.8
470102	1224742	17110019	--
470018	1224714	17110019	2.25
465954	1224615	17110019	--
470203	1224648	17110019	--
470208	1224652	17110019	12.2
470300	1224814	17110019	12.4
470338	1224811	17110019	20.5
470418	1224858	17110019	24.6
470435	1224914	17110019	0.46
465805	1224330	17110019	2.28
470009	1224307	17110019	19.9
470145	1224325	17110019	--
464710	1214518	17110015	--
464650	1214530	17110015	--
464640	1214420	17110015	--
464740	1214740	17110015	--
464630	1214840	17110015	--
464420	1215400	17110015	14
464430	1215540	17110015	68.5
464510	1220457	17110015	133
464308	1221036	17110015	--
464440	1220836	17110015	75.2
464547	1221127	17110015	--
464440	1221220	17110015	11.5
464605	1221605	17110015	252
464720	1221845	17110015	28
464809	1221837	17110015	286
464923	1221813	17110015	289
464922	1221811	17110015	289
464922	1221813	17110015	--
465037	1221946	17110015	292
465125	1221805	17110015	80.7
465548	1221540	17110015	--
465306	1221638	17110015	17.3
465250	1221630	17110015	16.3
465252	1221640	17110015	34.5
465152	1222033	17110015	--
465253	1222155	17110015	--
465104	1222603	17110015	431
465120	1222710	17110015	445
465640	1221626	17110015	4.08
465155	1222705	17110015	26
(Degr			

Site - ID
12089020 12089200 12089208 12089300 12089500 12089700 12090000 12090060 12090200 12090203 12090205 12090240 12090288 12090290 12090300 12090325 12090330 12090335 12090340 2090350 12090355 12090358 12090360 12090362 12090365 12090367 12090370 12090380 12090395 12090396 2090400 12090430 12090448 12090450 12090452 12090460 12090480 12090500 12090600 12090602 2090690 12090800 12090850 12090990 12091000 12091040

Station Name

CLEAR LAKE NR. MC KENNA
HARTS LAKE NR. MC KENNA
CENTRALIA POWER CANAL NR MCKENNA, WASH
NISQUALLY RIVER BELOW CENTRALIA DAM NR MCKENNA, WA NISQUALLY RIVER AT MCKENNA, WA
YELM CREEK NR YELM, WASH
MUCK CREEK NEAR LOVELAND, WA
MUCK CR NR ROY, WASH
MUCK CREEK AT ROY, WASH
NISQUALLY LAKE NR ROY, WASH
MUCK CREEK AT MOUTH NR ROY, WASH
NISQUALLY R. AT NISQUALLY, WASH
LOUISE LAKE NR STEILACOOM
MURRAY CREEK NR. TILLICUM
AMERICAN LAKE NR. TILLICUM
CLOVER CR AT TSC RIFLE RANGE NR SPANAWAY, WA
CLOVER CR AT MILITARY RD NR SPANAWAY, WA
CLOVER CR AT 152ND ST. E NR SPANAWAY, WA
UNNAMED TRIB. TO CLOVER CR AT BINGHAM AVE E. CLOVER CREEK NEAR PARKLAND, WA
CLOVER CR AT 25TH AVE E. NR PARKLAND, WA CLOVER CR BLW BROOKDALE GOLF COURSE NR SPANAWAY,WA CLOVER CR BLW 138TH ST S. NR PARKLAND, WA
CLOVER CR AT 136TH ST S. NR PARKLAND, WA
UNNAMED TRIB. TO NF CLOVER CR AT WALLER ROAD
UNNAMED TRIB TO NF CLOVER CR AT 136TH ST E. NR
NF CLOVER CR AT BROOKDALE RD NR PARKLAND, WA
UNNAMED TRIB TO NF CLOVER CR AT 99TH ST E. NR TAC
UNNAMED TRIB TO NF CLOVER CR AT BROOKDALE RD NR PA QA-CLOVER CR FIELD BLANK
NORTH FORK CLOVER CREEK NEAR PARKLAND, WASH. CLOVER CR AT 17TH AVE S. NR PARKLAND, WA
SPANAWAY CR AT SPANAWAY LOOP RD NR SPANAWAY, WA SPANAWAY LAKE NR SPANAWAY
SPANAWAY CR AT SPANAWAY LK OUTLET NR SPANAWAY, WA SPANAWAY CR AT TULE LK OUTLET NR PARKLAND, WA MOREY CR ABV MCCHORD AFB NR PARKLAND, WA CLOVER CREEK NEAR TILLICUM, WASH
CLOVER CREEK ABV. STEILACOOM LK. NR. TACOMA
CLOVER CR AT GRAVELLY LAKE DR. NR TACOMA, WA GRAVELLY LAKE NR. TILLICUM
WAPATO LAKE AT TACOMA, WASH
PONCE DE LEON CREEK NR. STEILACOOM
STEILACOOM LAKE NR. STEILACOOM
CHAMBERS CREEK AT STEILACOOM L., NR STEILACOOM,
CHAMBERS CR ABV FLETT CR NEAR STEILACOOM, WASH.

Latitude (Degrees)	Longitude (Degrees) (264942	Hydrologic Unit (OWDC)
465332	1222832	17110015
465401	1222950	17110015
465358	1222948	17110015
465601	1223335	17110015
465318	1223614	17110015
470055	1222515	17110015
470200	1222935	17110015
470020	1223232	17110015
470121	1223734	17110015
465949	1223737	--
470343	1224142	17110015
470952	1223400	17110019
470700	1223347	17110019
470630	1223518	17110019
470606	1222050	17110019
470617	1222232	17110019
470707	1222248	17110019
470733	1222200	17110019
470735	1222312	17110019
470740	1222343	17110019
470730	1222444	17110019
470755	1222532	17110019
470801	1222543	17110019
470802	1222316	17110019
470800	1222326	17110019
470758	1222407	17110019
471003	1222439	17110019
470804	1222428	17110019
470804	1222449	17110019
470805	1222450	17110019
470838	1222728	17110019
470603	1222655	17110019
470630	1222628	17110019
470721	1222642	17110019
470824	1222718	17110019
470749	1222742	17110019
470846	1223033	17110019
470925	1223139	17110019
470923	1223120	17110019
470832	1223145	17110019
471134	1222720	17110019
470945	1223141	17110019
471040	1223204	17110019
471040	1223205	17110019
471128	1223137	17110019

Drainage
Area
(Miles2)
--
--
--
--
517
1.72
16.9
--
86.8
--
--
710
--
--
--
--
18
--
0.01
--
20.7
--
42.6
--
0.14
--
--
0.19
--
73.4
--
--
-25
49.7
--
17.2
--

Site - ID 12091050 12091055 12091060 12091070 12091098 12091100 12091180 12091200 12091300 12091500 12091600 12091700 12091950 12091960 12092000 12092100 12092500 12093000 2093500 12093505 12093510 12093600 12093650 12093900 12094000 12094300 12094400 12094497 12094498 2094499 12094500 12094501 12095000 12095300 12095500 12095660 12095690 12095900 12096000 12096500 2096510 12096600 12096800 12096950 12097000 12097500

Station Name

FLETT CREEK AT 74TH ST., AT TACOMA, WASH.
USGS WAREHOUSE DCP TEST FACILITY NR STEILACOOM, WA FLETT CREEK AT MT. VIEW MEMORIAL PARK, WASH. FLETT CREEK BELOW FLETT SPRINGS AT TACOMA, WASH FLETT CR AT CUSTER RD AT TACOMA, WASH FLETT CREEK AT TACOMA, WASH. LEACH CREEK AT HOLDING POND, AT FIRCREST, WASH. LEACH CREEK NR FIRCREST, WASH LEACH CR NR STEILACOOM, WA CHAMBERS C BW LEACH C, NR STEILACOOM, WASH CHAMBERS CR. NR. STEILACOOM JUDD CREEK NEAR BURTON, WASH DEER CR NR ELECTRON, WA
UPPER GOLDEN LAKE NEAR ELECTRON, WA
PUYALLUP RIVER NR ELECTRON, WA
ALLISON CREEK NR ELECTRON, WASH
PUYALLUP RIVER AT ELECTRON, WA KAPOWSIN CREEK NEAR KAPOWSIN, WASH. PUYALLUP RIVER NEAR ORTING, WASH FOREST LAKE NR. ORTING
PUYALLUP RIVER AT ORTING, WASH
PUYALLUP RIVER NEAR MCMILLIN, WASH GREEN LAKE NEAR FAIRFAX, WA
CARBON RIVER AT FAIRFAX, WASH. CARBON RIVER NEAR FAIRFAX, WA CARBON RIVER NR. ORTING
SO PRAIRIE CREEK NR ENUMCLAW, WASH. WILKESON CR AT SNELL LK RD AT WILKESON, WASH WILKESON CR NR SKOOKUM TUNNEL AT WILKESON,WASH WILKESON CR NR SCHOOLHOUSE AT WILKESON, WASH WILKESON (GALE) CREEK AT WILKESON, WA WILKESON CR BLW WWTP AT WILKESON, WA SOUTH PRAIRIE CREEK AT SOUTH PRAIRIE, WASH. SOUTH PRAIRIE CR NR CROCKER, WASH VOIGHT CREEK NEAR CROCKER, WA VOIGHT CR NR ORTING, WASH CARBON RIVER AT ORTING, WA PUYALLUP RIVER AT MCMILLIN, WASH FENNEL CREEK NEAR MCMILLIN, WA PUYALLUP RIVER AT ALDERTON, WASH. UPPER DEADWOOD LAKE NEAR GREENWATER, WA WHITE RIVER NEAR GREENWATER, WA DRY CREEK NEAR GREENWATER, WASH. JIM CREEK NEAR GREENWATER, WASH. WHITE RIVER AT GREENWATER, WASH. GREENWATER RIVER AT GREENWATER, WASH.

Latitude	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
471126	1222908	17110019	4.23
471034	1222925	17110019	--
471106	1222917	17110019	5.91
471050	1223010	17110019	6.72
47111	1223105	17110019	--
471123	1223108	17110019	8.01
471329	1223032	17110019	4.59
471318	1223029	17110019	4.73
471154	1223117	17110019	6.56
471152	1223139	17110019	104
471132	1223420	17110019	108
472440	1222818	17110019	4.41
465128	1215806	17110014	--
465320	1215357	17110014	--
465414	1220202	17110014	92.8
465647	1200343	17110014	1.78
465945	1221030	17110014	131
465944	1221144	17110014	25.9
470222	1221224	17110014	172
470254	1221129	17110014	--
470521	1221243	17110014	--
470747	1221404	17110014	186
465837	1215134	17110014	--
470047	1220042	17110014	76.2
470141	1220153	17110014	78.9
470556	1220905	17110014	--
470530	1215705	17110014	22.4
470606	1220150	17110014	--
470605	1220206		--
470603	1220244	17110014	--
470620	1220245	17110014	25
470636	1220303	17110014	--
470823	1220529	17110014	79.5
470634	1220843	17110014	89.5
470410	1220700	17110014	22.9
470455	1221030	17110014	--
470700	1221308	17110014	230
470825	1221331	17110014	416
470910	1221255	17110014	12.5
471107	1221342	17110014	438
465314	1213116	17110014	--
465350	1213701	17110014	16.2
470040	1213145	17110014	1.01
470245	1214120	17110014	4.31
470913	1213844	17110014	216
1213804	17110014	73.5	

Site - ID 12097600 12097700 12097850 12098000 12098500 12098600 12098910 12099000 12099100 12099300 12099400 12099500 12099600 12100000 12100050 12100490 12100496 12100500 12100600 2101000 12101100 12101104 12101105 12101110 12101475 12101478 12101500 12102000 12102005 12102010 12102020 12102025 12102040 12102050 12102075 12102100 12102102 12102105 12102110 12102112 12102115 12102140 12102145 12102150 12102175 12102180

Station Name

WHITE R. NR. GREENWATER
CYCLONE CREEK NEAR ENUMCLAW, WASH.
WHITE R BL CLEARWATER R NR BUCKLEY WASH
MUD MOUNTAIN LAKE NEAR BUCKLEY,WASH
WHITE RIVER NEAR BUCKLEY, WASH.
WHITE R. NR. BUCKLEY
WHITE RIVER FLUME NR BUCKLEY WASH
WHITE RIVER CANAL AT BUCKLEY, WASH.
WHITE RIVER ABOVE BOISE CREEK AT BUCKLEY, WA
BOISE CR ABOVE RESERVOIR, NR ENUMCLAW, WASH.
BOISE C BL MILLPOND NR ENUMCLAW WN
BOISE CREEK NEAR ENUMCLAW, WASH
BOISE CR AT BUCKLEY
WHITE RIVER AT BUCKLEY, WASH.
WHITE R. BL BOISE CR. NR BUCKLEY
WHITE RIVER AT R-STREET NEAR AUBURN, WASHINGTON WHITE R. NR. AUBURN
WHITE RIVER NR SUMNER, WASH
STUCK RIVER TRIBUTARY NEAR MILTON, WA LAKE TAPPS NEAR SUMNER, WASH
LAKE TAPPS DIVERSION AT DIERINGER, WASH.
WHITE RIVER AT TACOMA AVE BRIDGE AT SUMNER, WA
WHITE RIVER AT WILLIAMS RD BRIDGE AT SUMNER, WASH WHITE R AT SUMNER
PUYALLUP R AT MERIDIAN ST BR AT PUYALLUP, WAS WAPATO CR DIV TO PUYALLUP RIV AT NO. PUYALLUP WA PUYALLUP RIVER AT PUYALLUP, WA
CLARK CREEK AT PUYALLUP, WASH.
MEEKER DITCH AT 7TH ST S AT PUYALLUP, WA
CLARKS CR AT 7TH AVE S.W AT PUYALLUP WA
DIRU CR AT INFLOW TO HATCHERY NR PUYALLUP, WA DIRU CR BLW HATCHERY AND PIONEER WAY NR PUYALLUP
W.F. CLARKS CR AT 104TH ST. EAST NR PUYALLUP, WA.

CLARKS CR TRIB AT PIONEER WAY NR PUYALLUP, WA
CLARKS CREEK AT TACOMA ROAD NEAR PUYALLÜP, WA CLARKS CR AT RIVER ROAD NR PUYALLUP, WA
PUYALLUP RIVER ABOVE CLEAR CREEK NEAR TACOMA, WA W.F. CLEAR CR AT 84TH ST. EAST NR TACOMA, WASH.
W.F. CLEAR CR AT 72ND ST E. TACOMA, WA
E.F. CLEAR CR AT 100TH ST. EAST NEAR TACOMA, WASH E.F. CLEAR CR AT 72ND ST E. NR TACOMA, WASH

CLEAR CR AT PIONEER WAY BLW HATCHERY NR TACOMA, WA CANYON CREEK AT 77TH ST. EAST NR TACOMA, WASH
SQUALLY CR AT 72ND ST E. TACOMA, WA
CLEAR CR AT 31ST AVE CT. E. TACOMA, WA
SWAN CREEK AT 96TH ST. EAST NR TACOMA, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
470953	1214437	17110014
471030	1214640	17110014
470849	1215132	17110014
470827	1215548	17110014
470905	1215655	17110014
470946	1215831	17110013
471012	1220018	--
471019	1220113	17110014
471012	1220012	17110014
471130	1215350	17110014
471145	1215547	17110014
471120	1215820	17110014
471034	1220102	17110014
471028	1220109	--
471101	1220338	17110014
471630	1221224	17110014
471558	1221343	17110014
471501	1221433	17110014
471520	1221635	17110014
471428	1221126	17110014
471418	1221337	17110014
471300	1221410	17110014
471245	1221430	17110014
471215	1221440	17110014
471210	1221733	17110019
471213	1221746	17110014
471231	1221933	17110014
471040	1221900	17110014
471100	1221804	17110014
471110	1221907	17110014
471130	1222017	17110014
471135	1222012	17110014
470943	1222053	17110014
471147	1222048	17110014
470923	1221909	17110014
471249	1222027	17110014
471410	1222330	17110014
471052	1222233	17110014
471130	1222231	17110014
470959	1222156	17110014
471129	1222211	17110014
471310	1222225	17110014
471111	1222110	17110014
471129	1222308	17110014
471354	1222308	17110014
471012	1222333	17110014

Drainage
Area
(Miles2)
--
2.35
375
400
401
--
--
--
411
4.6
8.27
12.3
15.4
427
--
--
464
470
0.53
--
--
--
--
--
--
--
948
--
--
-53
-
1.17
1.18
--
1.56
13
16.3
--

Site - ID 12102190 12102200 12102202 12102212 12102400 12102490 12102500 12102510 12102750 12102760 12102770 12102775 12102800 12102900 12102920 12103000 12103005 2103020 12103025 12103035 12103200 12103205 12103207 12103210 12103212 12103215 12103220 12103324 12103326 12103330 12103375 12103380 12103390 12103395 12103400 12103500 12104000 12104500 12104700 12105000 12105480 12105500 12105700 12105710 12105800 12105900

Station Name

SWAN CR AT 80TH ST. EAST NR TACOMA, WASH SWAN CREEK NEAR TACOMA, WASH. SWAN CR AT FLUME LINE ROAD, TACOMA, WA SWAN CR AT PIONEER WAY, TACOMA, WA PUYALLUP RIVER AT LINCOLN AVENUE AT TACOMA, WA WAPATO CR AT UNION PAC RR NR NO. PUYALLUP, WA WAPATO CREEK NEAR TACOMA, WA
WAPATO CR AT 12TH ST E. IN FIFE, WA
NORTH LAKE NR FEDERAL WAY
KILLARNEY LAKE NR ALGONA
HYLEBOS CR AT S. 370 ST. NEAR MILTON, WASH HYLEBOS CR TRIB ABV S. 363 PL. NR MILTON, WASH SOUTH FORK HYLEBOS CREEK NR PUYALLUP, WASH HYLEBOS CR ABV TRIB AT 5TH AVE IN MILTON, WA WEST TRIB TO HYLEBOS CR AT S. 356 ST NR MILTON,WA WEST TRIB TO HYLEBOS(HYLEBOS)CR NEAR MILTON,WA WEST TRIB TO HYLEBOS CR AT COMET ST NR MILTON, WA HYLEBOS CREEK AT HIGHWAY 99 AT FIFE, WA
HYLEBOS CR AT 8TH AVE E. IN FIFE, WA
FIFE DITCH AT 54TH ST E. IN FIFE, WA
JOES CREEK AT TACOMA, WASH
JOES CR AT MARINE DR. NEAR TACOMA, WASH
LAKOTA CR ABV SEWAGE TRTMNT PLANT NR TACOMA, WA REDONDO CR 1 AT REDONDO SHORES NR DESMOINES, WA REDONDO C 2 AB REDONDO HTS CONDO NR DESMOINES WA WOODMONT DRIVE CREEK NEAR DESMOINES, WASH. UNNAMEDCR AT SALT WATER ST PARK NR DESMOINES WA DES MOINES CR NR MOUTH AT DES MOINES, WA MILLER CREEK NR DES MOINES, WA
SEOLA BEACH DRAIN AT SEATTLE, WASH PIONEER CR NR LESTER, WA
GREEN RIVER ABV TWIN CAMP CREEK NR LESTER, WA SUNDAY CR NR LESTER, WA
INTAKE CR NR LESTER WA
GREEN RIVER BLW INTAKE CR NR LESTER, WASH.
SNOW CREEK NEAR LESTER, WASH.
FRIDAY CREEK NEAR LESTER, WASH.
GREEN RIVER NEAR LESTER, WASH.
GREEN CANYON CREEK NEAR LESTER, WASH.
SMAY CREEK NEAR LESTER, WASH.
CANTON CREEK AT HUMPHERY
CHARLEY CREEK NR EAGLE GORGE, WASH
N.F. GREEN RIVER NR PALMER, WASH

NORTH FORK GREEN RIVER NEAR LEMOLO, WASH
HOWARD A. HANSON RESERVOIR NEAR PALMER, WASH. GREEN RIVER BELOW HOWARD A. HANSON DAM, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainag Area (Miles2)
471105	1222333	17110014	2.35
471130	1222335	17110014	2.15
471142	1222235	17110014	2.28
471343	1222326	17110014	3.45
471500	1222447	17110014	--
471253	1221804	17110019	0.62
471330	1222010	17110019	6
471446	1222206	17110019	3.47
471817	1221719	17110019	--
471711	1221721	17110012	--
471613	1221806	17110019	--
471637	1221824	17110019	
471535	1221740	17110019	0.27
471510	1221939	17110019	4.77
471658	1221934	17110019	--
471602	1221942	17110019	7.33
471517	1221959	17110019	--
471439	1222013	17110019	16.8
471500	1222046	17110019	16.7
471525	1222127	17110019	2.03
471844	1222320	17110019	0.78
471937	1222231	17110019	--
471933	1222206	17110019	--
472032	1221952	17110019	--
472051	1221913	17110019	--
472155	1221855	17110019	--
472230	1221909	17110019	--
472420	1221938	17110019	6
472647	1222103	17110019	8.5
472948	1222227	17110019	--
471057	1212200	17110013	--
471055	1212315	17110013	16.5
471338	1212616	17110013	--
471221	1212417	17110013	3.4
471244	1212513	17110013	34.8
471510	1212410	17110013	11.5
471317	1212722	17110013	4.67
471228	1213307	17110013	96.2
471308	1213428	17110013	3.23
471543	1213352	17110013	8.56
471350	1214319	17110013	--
471500	1214700	17110013	11.3
471830	1214620	17110013	16.5
471821	1214620	17110013	16.7
471638	1214703	17110013	220
471702	1214748	17110013	221

Site - ID 12106000 12106500 12106700 12107000 12107200 12107290 12107300 12107498 12107500 12107950 12107995 12108000 12108050 12108450 12108500 12109000 12109010 12109450 12109500 12109550 12110000 12110002 12110003 12110004 12110005 12110400 12110500 12111000 12111500 12112000 12112500 12112550 12112600 12112610 12113000 12113200 12113300 12113340 12113342 12113346 12113347 12113349 12113350 12113370 12113375 12113385

Station Name
BEAR CREEK NR EAGLE GORGE, WASH
GREEN RIVER NEAR PALMER, WASH.
GREEN RIVER AT PURIFICATION PNT NR PALMER, WASH. GREEN RIVER AT KANASKAT, WA
DEEP CREEK NEAR CUMBERLAND, WASH
WALKER LAKE NEAR CUMBERLAND
ICY CREEK NR BLACK DIAMOND, WASH
GREEN R AT FLAMING GEYSER BR NR BLACK DIAMOND,WA GREEN RIVER NR BLACK DIAMOND, WASH.
NORTH FORK NEWAUKUM CREEK NEAR ENUMCLAW,WASH
NEWAUKUM CR AT SE 400TH ST NR ENUMCLAW, WA
NEWAUKUM CREEK NEAR ENUMCLAW, WA
CLOVERCREST OUTFALL AT ENUMCLAW,WASH
NEWAUKUM CREEK TRIBUTARY NEAR BLACK DIAMOND,WASH NEWAUKUM CREEK NEAR BLACK DIAMOND, WASH BURNS CREEK NEAR BLACK DIAMOND, WA
GREEN R AT AUBURN ACADEMY NR AUBURN, WASH SHADOW LAKE NR MAPLE VALLEY
LITTLE SOOS CREEK NEAR KENT, WASH.
LITTLE SOOS CR AT 164TH SE AT MERIDAN HEIGHTS, WA BIG SOOS CR ABV JENKINS CR NEAR AUBURN, WASH.
WILDERNESS LAKE NR. MAPLE VALLEY
WILDERNESS LAKE OUTLET NR MAPLE VALLEY, WA PIPE LAKE NR. MAPLE VALLEY
LUCERNE LAKE NR. MAPLE VALLEY S.F. JENKINS CREEK NEAR COVINGTON, WASH JENKINS CREEK NEAR AUBURN, WASH.
LAKE SAWYER NEAR BLACK DIAMOND, WASH. COVINGTON CREEK NR BLACK DIAMOND, WASH. COVINGTON CREEK NEAR AUBURN, WASH.
BIG SOOS CREEK NEAR AUBURN, WASH. SOOSETTE CREEK NEAR AUBURN, WASH BIG SOOS CREEK ABV HATCHERY, NR AUBURN, WA BIG SOOS CR NR MOUTH NR AUBURN, WASH GREEN RIVER NR AUBURN, WA MILL CREEK NEAR AUBURN, WASH. MILL CREEK TRIBUTARY NEAR AUBURN, WASH. GREEN R AT 212 ST. NR KENT, WASH
ANGLE LAKE NR DES MOINES,WASH SPRING BROOK CREEK AT ORILLIA, WA MILL CREEK AT EARTHWORKS PARK AT KENT, WA MILL CREEK NEAR MOUTH AT ORILLIA, WA GREEN RIVER AT TUKWILA, WASH SPRINGBROOK CR AT SW 27TH AT TUKWILLA, WA SPRINGBROOK CREEK AT TUKWILA, WA BLACK RIVER BELOW PUMP STATION NEAR RENTON, WA

Latitude (Degrees) 471700	Longitude (Degrees) 471740
471819	1214920
471910	1215058
471725	1215330
471547	1215500
471640	1215425
471651	1220212
471700	1220310
471406	1215542
471438	1220217
471630	1220330
471238	1220014
471512	1220134
471633	1220330
471700	1220610
471718	1220933
472408	1220458
472222	1220646
472143	1220718
472038	1220800
472204	1220212
472234	1220214
472158	1220306
472205	1220250
472122	1220502
472024	1220742
471953	1220223
472010	1220240
471851	1220632
471900	1220840
471903	1220930
471845	1220951
471822	1221016
471845	1221210
471815	1221600
472010	1221510
472445	1221549
472530	1221732
472553	1221335
472300	1221325
472620	1221426
472755	1221450
472721	1221335
472757	1221353
472833	1221441

Site - ID 12113390 12113400 12113470 12113485 12113488 12113492 12113493 12113499 12113500 12114000 12114500 12115000 12115300 12115500 12115700 12115800 12115900 12116000 12116060 12116100 12116400 12116450 12116500 12116700 12116800 12117000 12117490 12117500 12117600 12117695 12117699 12117700 12117800 12117820 12118000 12118200 12118300 12118400 12118500 12118510 12119000 12119005 12119007 12119300 12119302 12119375

Station Name

DUWAMISH R AT GOLF COURSE AT TUKWILA, WA DUWAMISH R AT TUKWILLA, WASH. DUWAMISH R AT FIRST AVENUE S AT SEATTLE WA DUWAMISH R AT TERMINAL 3 AT SEATTLE WA LONGFELLOW CR AT SW BRANDON ST NR WEST SEATTLE, WA DUWAMISH R AT TERM 5 AT SEATTLE, WASH. DUWAMISH R AT TERM 20 AT SEATTLE, WASH. TAYLOR CREEK AT LAKERIDGE PARK NEAR RENTON, WA NORTH FORK CEDAR RIVER NEAR LESTER, WASH. SOUTH FORK CEDAR RIVER NEAR LESTER, WASH. CEDAR R. BELOW BEAR CR., NEAR CEDAR FALLS, WASH CEDAR RIVER NEAR CEDAR FALLS, WASH GREEN POINT CREEK NEAR CEDAR FALLS, WASH. REX RIVER NEAR CEDAR FALLS, WASH. BOULDER CR NR CEDAR FALLS, WASH RACK CREEK NR CEDAR FALLS,WASH. CHESTER MORSE LAKE AT CEDAR FALLS, WASH CEDAR RIVER AT CEDAR LAKE, NEAR NORTH BEND, WA CEDAR LAKE (MASONRY POOL) NEAR CEDAR FALLS, WASH. CANYON CREEK NEAR CEDAR FALLS, WASH. CEDAR RIVER AT POWERPLANT AT CEDAR FALLS, WA CEDAR RIVER BELOW POWERPLANT NEAR CEDAR FALLS, WA CEDAR RIVER AT CEDAR FALLS, WASH.
MIDDLE FORK TAYLOR CREEK NEAR SELLECK, WASH. NORTH FORK TAYLOR CREEK NEAR SELLECK, WASH. TAYLOR CREEK NEAR SELLECK, WASH CEDAR R. AB ROCK CR. NR LANDSBURG CEDAR RIVER NEAR LANDSBURG, WASH. CEDAR RIVER BELOW DIVERSION NR LANDSBURG, WA ROCK CR AT CEDAR FALLS RD NR LANDSBURG, WA ROCK CREEK NEAR LANDSBURG, WA ROCK CR ABOVE WALSH LK DITCH NR LANDSBURG, WASH. WALSH LAKE CREEK NEAR LANDSBURG, WASH.
WALSH LAKE DITCH NEAR LANDSBURG, WA.
ROCK CREEK DIVERSION NEAR LANDSBURG, WASH RETREAT LAKE NEAR RAVENSDALE ROCK CREEK NEAR RAVENSDALE, WASH. ROCK CREEK AT HIGHWAY 516 NEAR RAVENSDALE, WA ROCK CREEK NEAR MAPLE VALLEY, WASH CEDAR R. AT MAPLE VALLEY CEDAR RIVER AT RENTON, WA CEDAR R. AT WILLIAMS AV AT RENTON CEDAR R AT LOGAN ST AT RENTON, WASH
MAY CREEK NEAR ISSAQUAH WASH
MAY CREEK TRIB AT STATE ROAD 900 NR ISSAQUAH,WA MAY CREEK AT RENTON WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
472845	1221527	17110013	461
472858	1221600	17110013	--
473233	1222001	17110013	477
473355	1222053	17110013	483
473317	1222157	17110013	2.2
473450	1222138	17110013	483
473451	1222042	17110013	483
473033	1221449	17110012	--
471910	1213005	17110012	9.3
471830	1213100	17110012	6
472032	1213252	17110012	25.4
472213	1213726	17110012	40.7
472320	1214030	17110012	0.89
472103	1213943	17110012	13.4
472159	1214130	17110012	4.64
472329	1214317	17110012	2.14
472434	1214322	17110012	78.4
472420	1214310	17110012	77.7
472443	1214504	17110012	78.4
472511	1214555	17110012	0.19
472508	1214649	17110012	--
472511	1214652	17110012	--
472502	1214727	17110012	84.2
472115	1214730	17110012	5.17
472220	1214820	17110012	3.77
472312	1215042	17110012	17.2
472328	1215508	17110012	--
472338	1215712	17110012	121
472247	1215856	17110012	124
472412	1215353	17110012	2.78
472358	1215513	17110012	4.73
472356	1215512	17110012	4.91
472400	1215515	17110012	--
472357	1215513	17110012	9.42
472330	1215840	17110012	11
472102	1215642	17110013	--
472145	1215945	17110012	--
472145	1220035	17110013	11.2
472248	1220058	17110012	12.6
472422	1220218	17110012	--
472858	1221208	17110012	184
472904	1221218	17110012	187
472909	1221228	17110012	--
472953	1220553	--0	2.82
472953	1220554	17110012	--
473102	1220855	--	7.57

Site - ID
12119400 12119450 12119500 12119600 12119700 12119725 12119730 12119731 12119732 12119795 12119800 12119850 12119900 12119950 12120000 12120005 12120480 12120490 12120500 12120600 12121000 12121500 12121510 12121600 12121699 12121700 12121720 12121750 12121800 12121810 12121815 12121820 12121830 12122000 12122010 12122500 12123000 12123100 12123200 12123300 12123500 12124000 12124500 12124998 12125000 12125200

Station Name

BOREN LAKE NEAR RENTON
HONEY CREEK NEAR RENTON WASH
MAY CREEK NR RENTON, WASH.
MAY CREEK AT MOUTH, NEAR RENTON, WASH.
COAL CREEK NR BELLEVUE, WASH.
LAKE HILLS STORM SEWER OUTFALL AT BELLEVUE, WA. 148TH AV STORM SWR BLW LK HILLS BLVD BELLEVUE,WA 148TH AVE UPSTREAM MANOMETER AT BELLEVUE WA
148TH AVE DOWNSTREAM MANOMETER AT BELLEVUE WA VALLEY CREEK AT NE 27TH ST NEAR BELLEVUE, WA VALLEY (NO BRANCH MERCER) CR NR BELLEVUE, WASH WEST BRANCH KELSEY CREEK AT BELLEVUE, WA
SUNSET CREEK AT SE 30TH ST NEAR BELLEVUE, WA WOODRIDGE PARK TRIB OF RICHARDS CR AT BELLEVUE MERCER CREEK NEAR BELLEVUE, WASH. SURREY DOWNS STORM SEWER OUTFALL AT BELLEVUE, WA JUANITA CREEK AT NE 132ND ST NR KIRKLAND, WA JUANITA CREEK AT JUANITA, WA
JUANITA CREEK NEAR KIRKLAND, WASH.
ISSAQUAH CREEK NEAR HOBART, WASH.
ISSAQUAH CREEK NEAR ISSAQUAH, WASH
EAST FORK ISSAQUAH CREEK AT ISSAQUAH, WA
EAST FORK ISSAQUAH CR AT MOUTH AT ISSAQUAH WASH ISSAQUAH CREEK NR MOUTH, NR ISSAQUAH, WA TIBBETTS CR AT SE NEWPORT WAY NEAR ISSAQUAH, WA TIBBETTS CREEK NEAR ISSAQUAH, WASH.
LAUGHING JACOBS CREEK NEAR ISSAQUAH, WASH.
LEWIS CR AT 187TH AVE SE NR BELLEVUE, WA
PINE LAKE NR ISSAQUAH, WA
PINE LAKE OUTLET NR ISSAQUAH, WA
PINE LK CR AT BURL-NORTH RR NEAR ISSAQUAH, WASH. SAMMAMISH LAKE TRIB. NEAR REDMOND, WASH INGLEWOOD CR AT E. LK. SAMM. PKWY NR REDMOND, WA SAMMAMISH LAKE NEAR REDMOND, WASH. SAMMAMISH R AB BEAR CR NR REDMOND,WASH BEAR CREEK NR REDMOND, WA
COTTAGE LAKE CR NEAR REDMOND, WASH. COTTAGE LAKE CR ABV BEAR CR NR REDMOND, WASH. BEAR CREEK TRIBUTARY NEAR REDMOND, WASH EVANS CREEK TRIBUTARY NEAR REDMOND, WASH EVANS CREEK NEAR REDMOND, WA
EVANS CREEK (ABOVE MOUTH) NR REDMOND, WASH. BEAR CREEK AT REDMOND, WASH.
SAMMAMISH R AT REDMOND, WASH
SAMMAMISH RIVER NEAR REDMOND, WASH. SAMMAMISH RIVER NEAR WOODINVILLE, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
473152	1220945	17110012	--
473048	1221041	--	0.7
473125	1221145	17110012	12.5
473148	1221200	17110012	12.7
473400	1221045	17110012	6.8
473623	1220812	17110012	--
473601	1220830	17110012	--
473601	1220831	--	--
473601	1220832	--	--
473807	1220903	17110012	2.1
473742	1220906	17110012	3.05
473608	1220950	17110012	10.1
473508	1220944	17110012	2.1
473532	1220952	17110012	--
473611	1221047	17110012	12
473602	1221130	17110012	--
474308	1221207	17110012	3.4
474240	1221235	17110012	6.3
474227	1221251	17110012	6.69
472727	1220014	17110012	17.6
472855	1220210	17110012	27
473155	1220120	17110012	8.54
473208	1220211	--	9.5
473309	1220248	17110012	56.6
473225	1220343	17110012	--
473230	1220347	17110012	3.9
473357	1220304	17110012	--
473415	1220529	17110012	1.9
473517	1220224	17110012	1.06
473515	1220309	17110012	1.06
473608	1220441	17110012	--
473630	1220418	17110012	--
473656	1220359	17110012	--
473447	1220638	17110012	99.6
473928	1220653	17110012	102
474304	1220434	17110012	13.9
474415	1220445	17110012	10.7
474303	1220507	17110013	12.2
474202	1220408	17110012	1.4
473905	1220245	17110012	2.46
473915	1220445	17110012	10.9
474031	1220448	17110012	13
474010	1220630	17110012	48.2
474015	1220735	17110012	148
474010	1220750	17110012	150
474215	1220829	17110012	159

Site - ID 12125500 12125800 12125900 12125950 12126000 12126100 12126200 12126500 12126800 12126900 12127000 12127100 12127101 12127290 12127300 12127395 12127400 12127500 12127600 12127700 12127800 12128000 12128150 12128300 12128500 12128900 12129000 12129300 12129310 12129320 12129330 12129350 12129360 12129370 12129390 12129600 12129610 12129620 12129710 12129730 12129750 12129800 12129810 12129820 12129840 12129850

Station Name

BEAR CREEK AT WOODINVILLE, WASH
PENNY CREEK NEAR EVERETT, WASH
NORTH CREEK BLW PENNY CR NEAR BOTHELL, WASH. NORTH CREEK TRIBUTARY NEAR WOODINVILLE, WASH.
NORTH CREEK NEAR BOTHELL, WASH.
NORTH CREEK NEAR WOODINVILLE. WASH
NORTH CREEK AT NORTH CREEK PARKWAY NR BOTHELL, WA SAMMAMISH RIVER AT BOTHELL, WASH
SWAMP CREEK NEAR ALDERWOOD MANOR, WASH
SCRIBER CREEK NEAR MOUNTLAKE TERRACE, WASH.
SWAMP CREEK NEAR BOTHELL, WA
SWAMP CREEK AT KENMORE, WASH
SWAMP CREEK NEAR KENMORE, WA
LYON CR AT NE 178TH AT LAKE FOREST PARK, WA
LYON CREEK AT LAKE FOREST PARK, WASH.
ECHO LAKE NR RICHMOND HEIGHTS
LAKE BALLINGER NEAR EDMONDS, WASH.
MCALEER CREEK NEAR BOTHELL, WASH.
MCALEER CREEK AT LAKE FOREST PARK, WASH. NF THORNTON CR BL GOLF COURSE NEAR SEATTLE, WA SF THORNTON CR AT 30TH AVE NE NR SEATTLE, WA THORNTON CREEK NEAR SEATTLE, WASH. DEER LAKE NR CLINTON
GOSS LAKE NR LANGLEY
POWDER CREEK NR MIKILTEO, WA
TYE RIVER NEAR SCENIC, WASH.
TYE RIVER NEAR SKYKOMISH, WASH
FOEHN LAKE NEAR SKYKOMISH, WASH
OPAL LAKE NEAR SKYKOMISH, WASH
EMERALD LAKE NEAR SKYKOMISH, WASH
JADE LAKE NEAR SKYKOMISH, WASH
TAHL LAKE NEAR SKYKOMISH, WASH
AL LAKE NEAR SKYKOMISH, WASH LOCKET LAKE NEAR SKYKOMISH, WASH LAKE ILSWOOT NEAR SKYKOMISH, WASH SOUTH TANK LAKE NEAR SKYKOMISH, WASH NORTH TANK LAKE NEAR SKYKOMISH, WASH BONNIE LAKE NEAR SKYKOMISH, WASH ANGELINE LAKE NEAR SKYKOMISH, WASH BIG HEART LAKE NEAR SKYKOMISH, WASH DELTA LAKE NEAR SKYKOMISH, WASH LITTLE HEART LAKE NEAR SKYKOMISH, WASH COPPER LAKE NR SKYKOMISH, WA
MCCAFFREY LAKE NEAR SKYKOMISH, WASH
LAKE MALACHITE NEAR SKYKOMISH, WASH TROUT LAKE NEAR SKYKOMISH, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
474525	1220950	17110012	15.3
475115	1221241	17110012	3.67
474913	1221242	17110012	12
474907	1221224	17110012	4.2
474730	1221147	17110012	24.6
474648	1221113	17110012	27
474634	1221107	17110012	27
474532	1221209	17110012	212
474932	1221515	17110012	9.55
474758	1221527	17110012	6.14
474600	1221425	17110012	21.8
474522	1221357	17110012	23.1
474520	1221350	17110012	--
474523	1221651	17110012	3.6
474511	1221635	17110012	3.67
474623	1222025	17110012	--
474643	1221938	17110012	5.09
474530	1221725	17110012	7.48
474507	1221648	17110012	7.8
474331	1221847	17110012	3.1
474225	1221736	17110012	3.4
474145	1221630	17110012	12.1
475820	1222313	17110019	--
480205	1222845	17110019	--
474710	1221610	17110019	--
474335	1210830	17110009	7.6
474220	1211740	17110009	79.8
473402	1211526	17110009	--
473438	1211508	17110009	--
473453	1211516	17110009	--
473510	1211525	17110009	--
473431	1211544	17110009	--
473458	1211539	17110009	--
473518	1211614	17110009	--
473522	1211504	17110009	--
473340	1211546	17110009	-
473401	1211550	17110009	--
473354	1211622	17110009	--
473445	1211826	17110009	-
473502	1211905	17110009	--
473545	1211846	17110009	--
473535	1211942	17110009	--
473628	1211941	17110009	--
473634	1211952	17110009	--
473637	1212005	17110009	--
473710	1211844	17110009	--

Site - ID
12129870 12129890 12129895 12129900 12130000 12130500 12130800 12131000 12132000 12132500 12132700 12133000 12133500 12134000 12134500 12134900 12135000 12135500 12136000 2136500 12137000 12137200 12137260 12137290 12137300 12137500 12137790 12137800 12138000 12138150 12138160 12138200 12138450 12138500 12139000 12139490 12139500 12140000 12140500 12141000 2141090 12141100 12141300 12141500 12141800 12142000

Station Name

ROCK LAKE NR SKYKOMISH, WASH
TOP LAKE NR SKYKOMISH, WASH
TOP LAKE POTHOLE NEAR SKYKOMISH, WASH
EVANS LAKE NEAR SKYKOMISH, WASH
FOSS RIVER NEAR SKYKOMISH, WA
S. F. SKYKOMISH RIVER NEAR SKYKOMISH, WASH.

BULLBUCKER CREEK NR SKYKOMISH, WASH
BECKLER RIVER NEAR SKYKOMISH, WASH.
MILLER RIVER AT MILLER RIVER, WASH.
S.F. SKYKOMISH R NR MILLER RIVER, WASH S.F. SKYKOMISH RIVER TRIBUTARY AT BARING, WASH. S.F. SKYKOMISH RIVER NEAR INDEX, WASH TROUBLESOME CREEK NEAR INDEX, WASH NORTH FORK SKYKOMISH RIVER AT INDEX, WASH. SKYKOMISH RIVER NEAR GOLD BAR, WASH.
WALLACE LAKE NEAR GOLD BAR
WALLACE RIVER AT GOLD BAR, WASH.
OLNEY CREEK NEAR GOLD BAR, WASH
OLNEY CREEK NEAR STARTUP, WASH
MAY CREEK NEAR GOLD BAR, WASH.
SKYKOMISH R AT SULTAN
ELK CREEK NEAR SULTAN,WASH
WILLIAMSON CREEK NEAR SULTAN,WASH
SOUTH FORK SULTAN RIVER NEAR SULTAN, WA
SPADA LAKE NEAR STARTUP, WA
SULTAN RIVER NEAR STARTUP, WASH
SULTAN RIVER AT DIVERSION DAM WEIR NR SULTAN, WA SULTAN RIVER BLW DIVERSION DAM NR SULTAN, WASH. SULTAN RIVER NEAR SULTAN, WASH.
SULTAN RIVER BLW CHAPLAIN CR NR SULTAN, WASH SULTAN RIVER BLW POWERPLANT NEAR SULTAN, WASH SULTAN R AT SULTAN
SKYKOMISH R BLW SULTAN R AT SULTAN, WASH
MCCOY CREEK NEAR SULTAN, WASH.
ELWELL CREEK NEAR SULTAN, WA
ROESIGER LAKE NEAR MONROE
ROESIGER CREEK NEAR MACHIAS, WASH
WOODS CREEK BELOW ROESIGER CREEK, NR MONROE, WA CARPENTER CREEK NEAR MACHIAS, WA WOODS CREEK NEAR MONROE, WASH. WOODS CR AT MONROE
SKYKOMISH RIVER AT MONROE, WA MIDDLE FORK SNOQUALMIE RIVER NEAR TANNER, WASH. MIDDLE FORK SNOQUALMIE R NR NORTH BEND, WASH. M.F. SNOQUALMIE R AT 428TH ST NR NORTH BEND, WA N.F. SNOQUALMIE RIVER NR SNOQUALMIE FALLS, WA.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Area (Miles2)
473832	1211956	17110009	--
473925	1212014	17110009	--
473923	1212002	17110009	--
473926	1211928	17110009	--
474140	1211750	17110009	54.8
474220	1211830	17110009	135
474951	1211755	17110009	0.7
474420	1211910	17110009	96.5
474230	1212350	17110009	45.6
474348	1212427	17110009	--
474614	1212851	17110009	0.95
474820	1213244	17110009	355
475400	1212340	17110009	10.6
474910	1213310	17110009	146
475015	1213956	17110009	535
475408	1214026	17110009	--
475151	1214053	17110009	19
475640	1214230	17110009	8.31
475535	1214310	17110009	10.3
475130	1213630	17110009	3.8
475138	1214848	17110009	--
475814	1213312	--	11.4
475909	1213600	--	15.6
475651	1213732	17110009	11.6
475828	1214110	17110009	68.3
475827	1214647	17110009	74.5
475734	1214746	17110009	77.1
475734	1214746	17110009	77.1
475540	1214750	17110009	86.6
475452	1214836	17110009	92.6
475427	1214851	17110009	94.2
475138	1214910	17110009	--
475134	1214911	17110009	--
474950	1214940	17110009	6.17
475010	1215100	17110009	22.9
475819	1215523	17110009	--
475750	1215500	17110009	3.8
475640	1215340	17110009	19
475750	1215810	17110009	8.89
475208	1215531	17110009	56.4
475116	1215750	17110009	--
475108	1215729	17110009	834
472910	1213848	17110010	154
472920	1214535	17110010	169
473059	1214605	17110010	--
473654	1214244	17110010	64

Site - ID 12142200 12142295 12142300 12142500 12143000 12143300 12143310 12143400 12143500 12143550 12143600 12143700 12143800 12143900 12144000 12144400 12144500 12144800 12145000 12145490 12145500 12145550 12145600 12146000 12146500 12147000 12147500 12147600 2147700 12147800 12147900 12148000 12148100 12148300 2148500 12148700 12148790 12148800 12149000 12149500 12149990 12150000 12150400 12150450 12150480 2150500

Station Name

CALLIGAN CREEK NR SNOQUALMIE, WASH HANCOCK LAKE NR. SNOQUALMIE
HANCOCK CREEK NR SNOQUALMIE, WASH N.F. SNOQUALMIE R AT CABLE BR NR NORTH BEND, WA. N.F. SNOQUALMIE RIVER NEAR NORTH BEND, WASH S F SNOQUALMIE R TRIB NEAR NORTH BEND, WASH SF SNOQUALMIE R TR NO 9 NR NORTH BEND, WASH SF SNOQUALMIE R AB ALICE CR NR GARCIA, WASH. S.F. SNOQUALMIE RIVER NR GARCIA, WASH. S.F. SNOQUALMIE R. AT WEEKS FALLS NR GARCIA, WA SF SNOQUALMIE R AT EDGEWICK, WA BOXLEY CREEK NEAR CEDAR FALLS, WASH. RATTLESNAKE LAKE AT CEDAR FALLS, WASH BOXLEY CREEK NEAR EDGEWICK, WASH. S.F. SNOQUALMIE RIVER AT NORTH BEND, WA SNOQUALMIE RIVER AT SNOQUALMIE, WASH SNOQUALMIE RIVER NEAR SNOQUALMIE, WASH. BEAVER C NR SNOQUALMIE WN
TOKUL CREEK NEAR SNOQUALMIE, WASH
ALICE LAKE NR PRESTON
RAGING RIVER NEAR FALL CITY, WASH.
RAGING RIVER AT FALL CITY, WA
SNOQUALMIE RAT FALL CITY WA
PATTERSON CREEK NEAR FALL CITY, WASH
PATTERSON CR, 8/10 MI ABV MOUTH, NR FALL CITY, WA GRIFFIN CREEK NEAR CARNATION, WASH.
NORTH FORK TOLT RIVER NEAR CARNATION, WASH SOUTH FORK TOLT RIVER NEAR INDEX, WASH. PHELPS CREEK NEAR INDEX, WASH
S F TOLT RIVER AT UPPER STA. NR CARNATION, WA. S.F. TOLT RESERVOIR NEAR CARNATION, WASH. SOUTH FORK TOLT RIVER NR CARNATION, WASH SO FK TOLT RIVER TRIB NR CARNATION, WASH. S F TOLT R BLW REGULATING BASIN NR CARNATION, WA TOLT RIVER NR CARNATION, WA
STOSSEL CREEK NEAR CARNATION, WASH
LANGLOIS LAKE NR CARNATION
TOLT R AT MOUTH NR CARNATION, WA
SNOQUALMIE RIVER NEAR CARNATION, WASH
HARRIS CREEK NEAR CARNATION, WA
AMES LAKE NR CARNATION
AMES CREEK NEAR TOLT, WA
SNOQUALMIE RIVER AT DUVALL, WA
KING LAKE NEAR MONROE
MARGARET LAKE NR DUVALL
CHERRY CREEK NEAR DUVALL, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
473605	1214120	17110010	7.31
473421	1214112	17110010	--
473421	1214112	17110010	7.67
473420	1214250	17110010	85.6
473215	1214426	17110010	95.7
472347	1212833	17110010	0.15
472348	1212838	17110010	0.34
472455	1213510	17110010	41.6
472500	1213520	17110010	45.8
472554	1213839	17110012	53.9
472710	1214310	17110010	65.9
472558	1214504	17110012	1.57
472539	1214629	17110012	1.86
472656	1214350	17110010	3.64
472935	1214720	17110010	81.7
473137	1214840	17110010	--
473243	1215028	17110010	375
473755	1214500	17110010	4.13
473320	1215015	17110010	32.2
473203	1215307	17110010	--
473224	1215428	17110010	30.6
473352	1215316	17110010	--
473406	1215318	17110010	--
473452	1215623	17110010	15.5
473515	1215540	17110010	21.3
473658	1215415	17110010	17.1
474245	1214715	17110010	39.9
474225	1213556	17110010	5.34
474220	1213605	17110010	2.04
474230	1213650	17110010	8.82
474138	1214116	17110010	--
474122	1214244	17110010	19.7
474150	1214400	17110009	2.19
474149	1214710	17110010	29.6
474145	1214922	17110010	81.4
474145	1214950	17110010	5.58
473814	1215303	17110010	--
473822	1215524	17110010	--
473958	1215527	17110010	603
474042	1215422	17110010	8.39
473840	1215720	--	--
473940	1215750	17110010	3.17
474436	1215912	17110010	--
474834	1215519	17110010	--
474613	1215406	17110010	--
474440	1215635	17110010	19.2

Site - ID 12150700 12150800 12151000 12151500 12152000 12152500 12152800 12153000 2153100 12153500 12154000 12154500 12155000 12155300 12155400 12155500 12156000 12156100 12156400 2156500 12157000 12157005 12157020 12157030 12157035 12157130 12157140 12157150 12157170 12157200 2157202 12157210 12157247 12157250 12157500 12157900 12157950 12158000 12158001 12158007 2158008 12158010 12158025 12158030 12158032 12158040

Station Name
SNOQUALMIE RIVER NR MONROE, WASH
SNOHOMISH RIVER NEAR MONROE, WASH
EVANS CREEK NEAR SNOHOMISH, WA
FRENCH CREEK NEAR MONROE, WA
PILCHUCK RIVER BLW WORTHY CR, NR GRANITE FALLS, WA PILCHUCK RIVER NEAR GRANITE FALLS, WASH
PILCHUCK R NR LAKE STEVENS, WASH
LITTLE PILCHUCK C NEAR LAKE STEVENS, WASH.
CASSIDY LAKE NR LAKE STEVENS
STEVENS LAKE NR LAKE STEVENS,WASH STEVENS CREEK AT LAKE STEVENS, WASH
DUBUQUE CR NR LAKE STEVENS WASH
PANTHER CREEK NEAR LAKE STEVENS, WA
PILCHUCK RIVER NEAR SNOHOMISH, WA
PILCHUCK R AT SNOHOMISH
SNOHOMISH R AT SNOHOMISH
WOOD CREEK NEAR EVERETT, WASH
SNOHOMISH R AT US HIGHWAY 2 AT EVERETT, WASH
MUNSON CREEK NEAR MARYSVILLE, WASH.
ALLEN CREEK AT MARYSVILLE, WA
QUILCEDA CREEK NEAR MARYSVILLE, WASH
QUILCEDA CR ABV WEST FORK NR MARYSVILLE, WASH.
W.F. QUILCEDA CREEK NEAR MARYSVILLE, WASH

QUILCEDA CREEK TRIB.NR.MARYSVILLE,WASH
STURGEON CREEK AT MARYSVILLE,WASH
JOHN SAM LAKE NEAR TULALIP, WA
MISSION CREEK BELOW JOHN SAM LAKE NR TULALIP, WA
MISSION CR NR MARYSVILLE,WASH
MISSION CR TRIBUTARY NR TULALIP,WASH
ROSS LAKE NR MARYSVILLE, WASH
TRIBUTARY TO MISSION CREEK NEAR TULALIP, WA
MISSION CR TRIB \#2 NR TULALIP,WASH
MISSION CR NR MISSION BEACH, WASH
MISSION CREEK NEAR TULALIP, WA
LAKE GOODWIN NEAR SILVANA, WASH.
LOMA LAKE NR TULALIP
CRABAPPLE LAKE NR TULALIP
LAKE SHOECRAFT NEAR TULALIP, WASH.
LAKE SHOECRAFT OUTLET NR TULALIP, WASH WEALLUP LAKE AT OUTLET NEAR TULALIP, WA TULALIP CREEK BELOW WEALLUP LAKE NR TULALIP, WA TULALIP CREEK ABOVE EAST BRANCH NEAR TULALIP, WA EAST BRANCH CR AB MARY SHELTON LAKE NR TULALIP, WA EAST BRANCH TULALIP CREEK NEAR TULALIP, WA EAST BRANCH TULALIP CREEK NR MOUTH NR TULALIP, WA TULALIP CREEK NEAR TULALIP, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
474814	1220006	17110010
474952	1220250	17110011
475030	1220500	17110011
475340	1220040	17110011
480120	1215310	17110011
480315	1215725	17110011
480312	1220122	17110011
480200	1220304	17110011
480251	1220528	17110011
480053	1220355	17110011
480100	1220310	17110011
475825	1220140	17110011
475925	1220140	17110011
475606	1220419	17110011
475447	1220456	17110011
475438	1220552	17110011
475525	1221100	17110011
475843	1221057	17110011
480350	1220810	17110011
480305	1220945	17110011
480620	1220940	17110011
480508	1221026	17110011
480603	1221105	17110011
480434	1221117	17110011
480327	1221147	17110011
480710	1221450	17110019
480642	1221452	17110019
480508	1221450	17110008
480500	1221458	17110019
480528	1221346	17110019
480515	1221337	17110019
480445	1221436	17110019
480313	1221452	17110019
480331	1221558	17110019
480802	1221757	17110019
480806	1221456	17110008
480757	1221626	17110019
480734	1221811	17110019
480724	1221824	---
480643	1221500	17110019
480643	1221758	17110019
480551	1221717	17110019
480647	1221545	17110019
480407	1221627	17110019
	1221644	17110019
1221712	17110019	

Drainage Area (Miles2)
--
1540
2.75
7.09
41.7
54.5
--
17
--
--
15.3
7.16
5.93
127
--
1720
1.89
1750
0.97
7.93
15.4
17.4
9.41
--
--
--
--
--
--
--
0.74
--
--
7.92
5.17
--
--
6.02
--
8.31
8.31
9.74
0.8
--
--

Site - ID 12158050 12158070 12158072 12158300 12158500 12159000 12159500 12160000 12160400 12160500 12161000 12161400 12161500 12162000 12162500 12163000 12163500 12164000 12164500 12164510 12164900 12165000 12165500 12166000 12166300 12166500 12166900 12167000 12167400 12167500 12167700 12168000 12168500 12168600 12169000 12169400 12169500 12170000 12170300 12170305 12170310 12170315 12170320 12170400 12170440 12170500

Station Name

CUMMINGS LAKE NEAR TULALIP, WASH HOWARD LAKE NR SYLVANA MARTHA LAKE NR SILVANA
DEER CREEK NEAR SILVERTON, WASH.
S F STILLAGUAMISH R AT SILVERTON WASH
SF STILLAGUAMISH R BLW BENDER CR, NR SILVERTON, WA S.F. STILLAGUAMISH RIVER NR SILVERTON, WASH. BOARDMAN CREEK NEAR SILVERTON, WA S.F.STILLAGUAMISH R. NR. VERLOT, WASH. BENSON CREEK NEAR GRANITE FALLS, WA S.F. STILLAGUAMISH R. NR. GRANITE FALLS, WASH CANYON CR. AT MASONIC PARK NR GRANITE FALLS, WA CANYON CR NR GRANITE FALLS WASH
S F STILLAGUAMISH R AT GRANITE FALLS WASH S.F. STILLAGUAMISH R AB JIM CR NR ARLNGTN, WASH JIM CR NR OSO WASH CUB CR NR OSO WASH JIM CREEK NEAR ARLINGTON, WASH
S.F. STILLAGUAMISH RIVER NR ARLINGTON, WASH S F STILLAGUAMISH R AT ARLINGTON NF STILLAGUAMISH R AB SQUIRRE CR NR DARRINGTON, WA SQUIRE CREEK NEAR DARRINGTON, WASH
N F STILLAGUAMISH R NR DARRINGTON, WASH BOULDER CREEK NEAR OSO, WA
N F STILLAGUAMISH R NR OSO
DEER CREEK AT OSO, WASH
N.F. STILLAGUAMISH R AT CICERO, WASH N.F. STILLAGUAMISH R. NR. ARLINGTON, WASH STILLAGUAMISH RIVER AT ARLINGTON, WASH. ARMSTRONG CREEK NR ARLINGTON, WASH. STILLAGUAMISH RIVER NR SILVANA, WA CAVANAUGH LAKE NEAR OSO, WA
PILCHUCK CREEK NEAR BRYANT, WASH
PILCHUCK CREEK NEAR SILVANA, WASH. PORTAGE CREEK NEAR ARLINGTON, WA KI LAKE NR SILVANA
FISH CREEK NEAR ARLINGTON, WASH. CHURCH CREEK NEAR STANWOOD, WA STILLAGUAMISH R NR STANWOOD, WASH UNNAMED TRIB TO SARATOGA PASSAGE ON CAMANO IS, WA UNNAMED TRIB TO SKAGIT BAY ON CAMANO ISLAND, WA UNNAMED TRIB TO SKAGIT BAY NR OAK HARBOR, WA UNNAMED TRIB TO PENN COVE NR SAN DE FUCA, WA CULTUS CREEK NEAR MAXWELTON, WA UNNAMED TRIB TO ADMIRALTY INLET NR BUSH POINT, WA SKAGIT RIVER NR HOPE, B.C.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
480724	1222046	17110019	--
480922	1221924	17110019	--
481003	1222046	17110008	--
480640	1213450	17110006	1.07
480420	1213450	17110008	37.2
480410	1213550	17110008	40.7
480400	1213620	17110006	43.7
480400	1214030	17110008	8.52
480512	1214538	17110008	--
480530	1214630	17110008	2.7
480612	1215707	17110008	119
480702	1215405	17110008	--
480715	1215545	17110008	59.8
480540	1215820	17110008	182
481005	1220405	17110008	199
481230	1215540	17110008	10.9
481220	1215610	17110008	6.44
481025	1220405	17110008	46.2
481140	1220545	17110008	251
481203	1220704	17110008	--
481704	1213818	17110005	48.2
481615	1214000	17110008	20
481648	1214204	17110008	82.2
481645	1214645	17110008	27
481621	1215313	17110007	--
481700	1215545	17110008	65.9
481604	1220044	17110008	--
481542	1220247	17110008	262
481210	1220735	17110008	539
481315	1220800	17110008	7.33
481148	1221233	17110008	557
481930	1221915	17110007	6.7
481558	1220946	17110008	52
481244	1221300	17110008	--
481045	1221140	17110008	8.8
480925	1221545	17110008	--
481035	1221325	17110008	7.52
481400	1221930	17110008	6.4
481241	1222010	17110008	--
480405	1222310	17110019	0.41
481517	1222740	17110019	0.6
481958	1223229	17110019	6.36
481421	1224226	17110019	2.92
475606	1222400	17110019	3.05
480310	1223517	17110019	0.5
490250	1210545	--	357

Site - ID 12170600 12171000 12171200 12171500 12172000 12172500 12173000 12173500 12174000 12174500 12175000 12175400 12175500 12176000 12176500 12177000 12177450 12177500 12177520 12177620 12177700 12177900 12178000 12178050 12178100 12178400 12178500 12179000 12179500 12179800 2179820 12179900 12180000 12180500 12181000 12181090 12181100 12181110 12181120 12181200 2181500 12182000 12182200 12182500 12183000 12183500

Station Name

SKAGIT R. AT INTNTL BNDRY, NR HOPE, B.C.
LIGHTNING CREEK NEAR NEWHALEM, WASH SKYMO LAKE NEAR NEWHALEM, WA
SKAGIT RIVER AB DEVILS CR NR NEWHALEM, WASH. BIG BEAVER CREEK NEAR NEWHALEM, WASH.
SKAGIT RIVER NR NEWHALEM, WA
GRANITE CR NR NEWHALEM WASH
RUBY C BELOW PANTHER C, NR NEWHALEM, WASH. RUBY CREEK NEAR NEWHALEM, WASH
SKAGIT R BELOW RUBY C, NEAR NEWHALEM, WASH. ROSS RESERVOIR NEAR NEWHALEM, WASH.
THUNDER CR BLW MCALLISTER CR NR NEWHALEM, WASH.
THUNDER CREEK NR. NEWHALEM, WASH.
THUNDER CREEK NEAR MARBLEMOUNT, WASH.
DIABLO RESERVOIR NEAR NEWHALEM, WASH.
SKAGIT R AT REFLECTOR BAR, NR NEWHALEM, WASH STETATTLE CR BL CAMP DAYO CR NR NEWHALEM, WA STETATTLE CREEK NEAR NEWHALEM, WASH PYRAMID CR NR NEWHALEM WASH.
SKAGIT RIVER TRIB NR NEWHALEM, WA GORGE RESERVOIR NEAR NEWHALEM, WASH. LADDER CREEK AT NEHALEM, WA.
SKAGIT RIVER AT NEWHALEM, WASH.
UPPER WILCOX LAKE NEAR NEWHALEM, WA
NEWHALEM CREEK NR. NEWHALEM, WASH GOODELL CR NR N CASCADES NP BOUNDARY NR NEWHALEM GOODELL CREEK NEAR NEWHALEM, WA
SKAGIT RIVER ABV ALMA CR, NR MARBLEMOUNT, WASH.
ALMA CREEK NR MARBLEMOUNT, WA
SKAGIT R. ABOVE BACON CREEK NEAR MARBLEMOUNT WA. GREEN LAKE NEAR MARBLEMOUNT, WA BACON CREEK BELOW OAKES CREEK NEAR MARBLEMOUNT, WA BACON CREEK NEAR MARBLEMOUNT, WASH DIOBSUD CREEK NEAR MARBLEMOUNT, WA SKAGIT RIVER AT MARBLEMOUNT, WASH. SOUTH CASCADE MIDDLE TARN NEAR MARBLEMOUNT, WA S.F. CASCADE R AT SO CASCADE GL NR MBLMNT, WASH SOUTH CASCADE GLACIER HUT 1 NR MARBLEMOUNT, WA SOUTH CASCADE GLACIER HUT 2 NR MARBLEMOUNT, WA SALIX CR AT SO CASCADE GL NR MARBLEMOUNT, WASH. MARBLE CREEK NEAR MARBLEMOUNT, WA
CASCADE RIVER NEAR MARBLEMOUNT, WASH
CASCADE R TR NR MARBLEMOUNT WASH.
CASCADE RIVER AT MARBLEMOUNT, WASH
CLARK CR AT MARBLEMOUNT WASH
JORDAN CR AT MARBLEMOUNT WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
490001	1210415	--	381
485330	1205850	17110005	129
485014	1210603	17110005	--
485030	1210220	17110005	655
484640	1210420	17110005	63.2
484450	1210150	17110005	765
484140	1205330	17110005	71
484230	1205810	17110005	206
484320	1210030	17110005	210
484420	1210340	17110005	999
484358	1210402	17110005	999
483800	1210300	17110005	91.7
484022	1210418	17110005	105
484230	1210600	17110005	114
484256	1210752	17110005	--
484250	1210830	17110005	1120
484357	1210955	17110005	19.5
484320	1210858	17110005	22
484237	1210840	17110005	2.82
484219	1211047	17110005	0.43
484153	1211225	17110005	--
484032	1211420	17110005	--
484019	1211442	17110005	1180
483604	1211014	17110005	--
483922	1211414	17110005	27.9
484053	1211617	17110005	38.6
484025	1211550	17110005	38.7
483627	1212137	17110005	1270
483600	1212140	17110005	8.48
483510	1212311	17110005	1290
484135	1213015	17110005	--
483617	1212354	17110005	49.7
483520	1212340	17110005	50.9
483340	1212500	17110005	25.4
483202	1212543	17110005	1380
482208	1210332	17110005	--
482213	1210423	17110005	2.36
482152	1210353	17110005	--
482153	1210353	17110005	--
482216	1210435	17110005	0.08
483210	1211620	17110005	15.9
483125	1212300	17110005	140
483154	1212006	17110005	0.72
483137	1212450	17110005	172
483115	1212505	17110005	1.42
483100	1212500	17110005	12

Site - ID 12184000 12184200 12184300 12184500 12184700 12185000 12185295 12185297 12185300 12185500 12186000 12186500 12187000 12187500 12188000 12188300 12188400 12188500 12189000 12189400 12189498 12189500 12190000 12190400 12190700 12190710 12190718 12190720 12190800 2191000 12191500 12191600 12191700 12191800 12191820 12191900 12192000 12192500 12192600 12192700 12193000 12193200 12193500 12194000 12194500 12195000

Station Name

ROCKY CREEK NEAR MARBLEMOUNT, WA UPPER ILLABOT CR NR ROCKPORT, WASH. IRON CREEK NEAR ROCKPORT, WASH
ILLABOT CR. NR ROCKPORT, WASH.
SKAGIT RIVER NR ROCKPORT, WASH N F SAUK R NR BARLOW PASS WASH GOAT LAKE INLET NEAR MONTE CRISTO, WASH. GOAT LAKE NEAR MONTE CRISTO, WASH ELLIOTT CR AT GOAT LK OUTLET NR MONTE CRISTO, WA S.F. SAUK RIVER NR BARLOW PASS, WASH. SAUK R ABV WHITECHUCK R NR DARRINGTON, WASH WHITE CHUCK R NR DARRINGTON WASH SAUK R AB CLEAR CR NR DARRINGTON WASH SAUK RIVER AT DARRINGTON, WASH. SUIATTLE RIVER BLW LIME CR, NR DARRINGTON, WA STRAIGHT CREEK NEAR DARRINGTON, WASH SUIATTLE R ABV BIG CR NR DARRINGTON, WASH BIG CR NR MANSFORD WASH
SUIATTLE RIVER NEAR MANSFORD, WASH. SAUK RIVER TRIBUTARY NEAR DARRINGTON, WASH SAUK R NR ROCKPORT, WASH
SAUK RIVER NEAR SAUK, WASH
JACKMAN CR NR CONCRETE WASH
BAKER RIVER ABV BLUM CR NR CONCRETE,WASH MOROVITZ CREEK NEAR CONCRETE, WASH. SWIFT CREEK NEAR CONCRETE, WASH PARK CREEK AT UPPER BRIDGE NEAR CONCRETE, WASH PARK CREEK NR CONCRETE WASH BOULDER CREEK NEAR CONCRETE,WASH SANDY CREEK NEAR CONCRETE,WASH BAKER R BELOW ANDERSON C, NR CONCRETE, WASH BAKER LAKE AT UPPER BKR DM NR CONCRETE WASH BAKER RIVER AT UPPER BAKER DAM NR CONCRETE,WASH SULPHUR CREEK NEAR CONCRETE WA SULPHUR CREEK AT GUARD STATION NR CONCRETE,WASH ROCKY CREEK NEAR CONCRETE,WASH BEAR CREEK NEAR CONCRETE, WA N.F. BEAR CREEK NEAR CONCRETE, WA BEAR CREEK BLW TRIBUTARIES NEAR CONCRETE, WASH THUNDER CREEK NEAR CONCRETE, WASH
LAKE SHANNON AT CONCRETE, WASH. LOWER BAKER PP TAILWATER AT CONCRETE, WASH BAKER RIVER AT CONCRETE, WASH. SKAGIT RIVER NEAR CONCRETE, WA FINNEY CR NR CONCRETE WASH GRANDY CREEK NEAR CONCRETE, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
483030	1212950	17110005	10
482554	1212542	17110005	--
482605	1212755	17110005	1.7
482853	1213003	17110005	42.4
482930	1213255	17110005	1660
480520	1212000	17110006	76.4
480052	1212051	17110006	--
480104	1212049	17110006	--
480120	1212119	17110006	3.03
480345	1212420	17110006	33.1
481008	1212810	17110006	152
481030	1212300	17110006	77.9
481300	1213400	17110006	259
481500	1213500	17110006	293
481455	1211810	17110006	213
481405	1212310	17110006	4.32
482032	1212708	17110006	307
482020	1212610	17110006	21
482150	1212930	17110006	335
482030	1213300	17110006	1.3
482424	1213327	17110006	--
482529	1213402	17110006	714
483125	1214245	17110005	23.9
484515	1213245	17110005	--
484535	1214025	17110005	2.58
484407	1213926	17110005	36.4
484436	1214123	17110005	10.5
484358	1213943	17110005	--
484300	1214134	17110005	--
484105	1214223	17110005	--
483950	1214025	17110005	211
483858	1214122	17110005	215
483854	1214147	17110005	--
484040	1214500	17110005	8.36
483933	1214244	17110005	--
483852	1214350	17110005	--
483710	1214435	17110005	10
483805	1214420	17110005	20.2
483711	1214409	17110005	14.4
483608	1214217	17110005	22.4
483253	1214422	17110005	297
483240	1214425	17110005	--
483224	1214431	17110005	297
483128	1214611	17110007	2740
483035	1214845	17110007	51.6
483200	1215300	17110007	18.9

Site - ID
12195500 12196000 12196150 12196153 12196155 12196170 12196200 12196400 12196500 12197000 12197020 12197040 12197100 12197110 12197200 12197500 12197680 12197690 12197700 12198000 12198500 12199000 12199200 12199499 12199500 12199800 12200000 12200020 12200025 12200500 2200675 12200680 12200700 12200702 12200704 12200706 12200708 12200728 12200730 12200733 12200737 2200746 12200750 12200754 12200762 12200800

Station Name
O TOOLE CREEK NEAR HAMILTON, WA
ALDER CREEK NR HAMILTON, WASH.
SKAGIT RIVER NEAR HAMILTON, WASH.
LORETTA CR NR DAY CR, WASH
LORETTA CR NR HAMILTON, WASH
DAY LAKE NR LYMAN
DAY CREEK BELOW DAY LAKE, NEAR LYMAN, WASH. DAY CREEK NEAR HAMILTON, WASH.
DAY CREEK NEAR LYMAN, WASH.
JONES CREEK NR LYMAN, WA
CHILDS CR NR LYMAN WASH
TANK CR NR LYMAN WASH
MINKLER LAKE NR LYMAN
MINKLER CR NR LYMAN WASH
PARKER CREEK NEAR LYMAN, WASH.
GILLIGAN CREEK NEAR LYMAN, WA
BLACK CREEK NEAR MINKLER, WASH
BLACK CR NR LYMAN WASH
WISEMAN CR NR LYMAN WASH
COOL CR NR SEDRO WOOLLEY WASH
HANSEN CR NR SEDRO WOOLLEY WASH
SKAGIT RIVER NEAR SEDRO WOOLLEY, WASH.
MCMURRAY LAKE AT MCMURRAY
BIG LAKE AT BIG LAKE
NOOKACHAMPS CREEK NEAR MOUNT VERNON, WA EAST FORK NOOKACHAMPS CREEK NEAR BIG LAKE, WASH. E.F. NOOKACHAMPS CREEK NR CLEAR LAKE, WASH.

CLEAR LAKE AT CLEAR LAKE
BEAVER LAKE NR CLEAR LAKE
SKAGIT RIVER NEAR MOUNT VERNON, WASH. S F SKAGIT R AT CONWAY FRESH WATER SLOUGH OF SF SKAGIT R AT CONWAY,WAS CARPENTER CR TRIB NR MOUNT VERNON, WASH. UNNAMED TRIB TO SKAGIT BAY NR LACONNER,WASH UNNAMED TRIB NO2 TO SKAGIT BAY NR LACONNER WASH UNNAMED TRIB TO SWINOMISH CHANNEL NR LACONNER WA UNNAMED TRIB NO2 TO SWINOMISH CHNL N LACONNER WA UNNAMED TRIB TO JASPER BAY ON LOPEZ ISLAND, WA UNNAMED TRIB TO DAVIS BAY ON LOPEZ ISLAND, WA UNNAMED TRIB TO LOPEZ SOUND ON LOPEZ ISLAND, WA UNNAMED TRIB TO SQUAW BAY ON SHAW ISLAND, WA AMERICAN CAMP POND ON SAN JUAN ISLAND, WA UNNAMED TRIB TO TROUT LAKE ON SAN JUAN ISLAND, WA UNNAMED CR AT ENGLISH CAMP ON SAN JUAN ISLAND, WA UNNAMED TRIB TO MASSACRE BAY ON ORCAS ISLAND, WA LAKE CREEK NEAR BELLINGHAM, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
483040	1215505	17110007	5.69
483142	1215658	17110007	10.7
483027	1220040	17110007	2870
482803	1215915	17110007	--
483013	1220116	17110007	--
482429	1215830	17110007	--
482431	1215847	17110007	6.56
482910	1220157	17110007	32.3
483005	1220245	17110007	34.2
483215	1220240	17110007	7.8
483146	1220517	17110007	--
483138	1220619	17110007	2.5
483124	1220611	17110007	--
483115	1220600	17110007	--
482925	1220550	17110007	1.82
482905	1220800	17110007	6.31
483234	1220650	--	--
483209	1220720	17110007	--
483149	1220808	17110007	3
483200	1220900	17110007	1.88
483030	1221210	17110007	9.66
482903	1221431	17110007	3020
481850	1221310	17110007	--
482352	1221424	17110007	--
482405	1221410	17110007	22.2
482450	1220925	17110007	3.56
482530	1221230	17110007	20.5
482756	1221306	17110007	--
482645	1221310	17110007	--
482642	1222003	17110007	3090
482031	1222103	17110007	--
482000	1222103	17110007	3100
481710	1221725	17110007	2.58
482257	1222148	17110007	--
482347	1223208	17110019	--
482512	1223003	17110019	--
482555	1223054	17110019	--
482819	1225125	17110003	--
482805	1225508	17110003	--
483042	1225254	17110003	--
483350	1225721	17110003	--
482736	1225833	17110003	--
483208	1230750	17110003	--
483509	1230851	17110003	--
483904	1225914	17110003	--
484105	1222330	17110002	2.35

Site - ID 12200850 12200900 12201000 12201100 12201500 12201900 12201950 12201960 12202000 12202050 12202300 2202310 12202400 12202420 12202450 12202500 12203000 2203500 2203540 12203550 12203900 12204000 12204050 12204200 12204400 12204500 12205000 12205295 12205298 2205310 12205315 12205320 12205340 12205350 12205360 12205490 12205497 12205500 12206000 12206500 12206900 12207000 12207200 12207250 12207300 12207750

Station Name

SAMISH LAKE NR. BELLINGHAM FRIDAY CR AT ALGER
FRIDAY CREEK NR BURLINGTON, WASH
FRIDAY CR BLW HATCHERY NR BURLINGTON
SAMISH RIVER NR BURLINGTON, WASH
PADDEN LAKE AT BELLINGHAM
ANDERSON CREEK NEAR BELLINGHAM, WASH
BRANNIAN CREEK AT S BAY DR NR WICKERSHAM, WA
AUSTIN CREEK NR BELLINGHAM, WASH
SMITH CR NR BELLINGHAM WASH
OLSEN CREEK NR BELLINGHAM, WASH.
CARPENTER CREEK AT N SHORE DRIVE NR BELLINGHAM, WA EUCLID CR AT EUCLID AVE AT BELLINGHAM, WA
MILL CREEK AT FLYNN ROAD AT BELLINGHAM, WA
SILVER BEACH CR AT MAYNARD PL AT BELLINGHAM, WA
WHATCOM LAKE NR BELLINGHAM
WHATCOM CREEK NR BELLINGHAM, WASH.
WHATCOM CR BLW HATCHERY NR BELLINGHAM, WASH.
WHATCOM CREEK AT JAMES ST AT BELLINGHAM, WA
WHATCOM CR. AT BELLINGHAM
TOAD LK NR BELLINGHAM,WASH
SQUALICUM CREEK AT BELLINGHAM, WA
TENNANT LAKE NR FERNDALE
GALENA CREEK NEAR GLACIER, WASH
NOOKSACK RIVER TRIBUTARY NEAR GLACIER, WASH.
NOOKSACK RIVER AT EXCELSIOR, WA
N.F. NOOKSACK R BLW CASCADE CR NR GLACIER, WASH.

DAVIS CR AT GLACIER, WASH
LITTLE CR AT GLACIER, WASH
GALLOP CR NR GLACIER, WASH
GALLOP CR ABV MOUTH NR GLACIER WASH
GALLOP CR NR MOUTH AT GLACIER, WASH
CORNELL CREEK AT GLACIER WASH
WEST CORNELL CREEK NEAR GLACIER, WA
HENDRICK CREEK NEAR GLACIER
KIDNEY CREEK NR GLACIER, WASH
CANYON CREEK NEAR GLACIER, WA
N.F. NOOKSACK RIVER NR GLACIER, WASH

KENDALL CR AT KENDALL WASH
KENDALL CREEK NR MOUTH AT KENDALL, WA
RACEHORSE CR AT NORTH FORK ROAD NR KENDALL, WA COAL CREEK NEAR KENDALL, WA
N.F. NOOKSACK RIVER NR DEMING, WASH.

KENNY CREEK NEAR DEMING, WA
NF NOOKSACK RIVER BELOW KENNEY CREEK NR DEMING, WA WARM CREEK NEAR WELCOME, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
483856	1222215	17110002	17.3
483710	1222050	17110002	--
483420	1222015	17110002	37.1
483332	1221938	17110002	--
483246	1222013	17110002	87.8
484215	1222741	17110002	--
484026	1221558	17110002	4.13
484009	1221644	17110002	3.36
484247	1221948	17110002	7.73
484401	1221820	17110002	5.12
484505	1222108	17110002	3.78
484515	1222110	17110002	1.17
484456	1222429	17110002	0.54
484519	1222455	17110002	0.79
484610	1222419	17110002	1.2
484545	1222510	17110002	55.9
484514	1222535	17110002	55.4
484506	1222542	17110002	56.1
484517	1222750	17110002	--
484518	1222853	17110002	64.7
484723	1222357	17110002	--
484650	1222625	17110002	12
484948	1223447	17110004	--
485218	1213955	17110004	0.55
485430	1214820	17110004	1.15
485420	1214910	17110004	95.7
485422	1215035	17110004	105
485242	1215544	--	--
485252	1215612	--	--
485053	1215655	17110004	--
485158	1215658	17110004	--
485306	1215639	17110004	--
485315	1215733	17110004	--
485315	1215735	17110004	--
485346	1215815	17110004	--
485640	1215520	17110004	2.66
485452	1215928	17110004	30.4
485415	1215930	17110004	195
485505	1220835	17110004	24
485420	1220820	17110004	29.2
485306	1220755	17110004	10.5
485320	1220905	17110004	4.57
485224	1220856	17110004	282
485108	1220835	17110004	--
485018	1220910	17110004	--
484603	1215748	17110004	4.13

Site - ID 12207800 12207850 12207900 12207950 12208000 12208100 12208500 12209000 2209460 12209490 12209495 12209498 12209500 12210000 12210480 12210500 12210700 12210800 12210900 12211000 12211200 12211390 12211400 12211480 12211490 12211500 12211890 12211900 12211950 12212000 12212030 12212035 12212040 12212050 12212100 12212200 12212400 12212450 12212480 12212500 2212700 12212800 12212895 12212900 12212950 12213000

Station Name
MF NOOKSACK R AB CLEARWATER C NR DEMING,WASH
CLEARWATER CREEK NEAR WELCOME, WA CLEARWATER CREEK NR DEMING,WASH
MF NOOKSACK DIVERSION AT PUMP STATION NR DEMING,WA M.F. NOOKSACK RIVER NR DEMING, WASH.

MF NOOKSACK RIVER BL HEISTERS CR NR VAN ZANDT, WA CANYON CREEK AT KULSHAN, WASH.
S.F. NOOKSACK RIVER NEAR WICKERSHAM, WASH ARLECHO CREEK NEAR WICKERSHAM, WA SKOOKUM CR ABOVE DIVERSION NR WICKERSHAM, WA SKOOKUM CR. HATCHERY INFLOW NR. WICKERSHAM SKOOKUM CR. HATCHERY OUTFLOW NR. WICKERSHA SKOOKUM CREFK NEAR WICKERSHAM WASH SOUTH FORK NOOKSACK R AT SAXON BRIDGE WASH SOUTH FORK NOOKSACK RIVER AT VAN ZANDT, WA NOOKSACK RIVER AT DEMING, WASH
NOOKSACK RIVER AT NORTH CEDARVILLE, WASH.
SMITH CREEK NEAR GOSHEN
ANDERSON CREEK AT SMITH ROAD NEAR GOSHEN, WA ANDERSON CREEK AT GOSHEN, WA
NOOKSACK RIVER AT EVERSON, WA
KAMM CR AT KAMM ROAD NR LYNDEN, WA
KAMM CREEK AT LYNDEN, WA
SCOTT CREEK AT THEIL ROAD NEAR LYNDEN, WA SCOTT CREEK AT BLYSMA ROAD NEAR LYNDEN, WA NOOKSACK RIVER NEAR LYNDEN, WASH.
FISHTRAP CREEK NEAR PEARDONVILLE, BC
FISHTRAP CREEK AT I.B. NR LYNDEN, WA
FISHTRAP CREEK NEAR LYNDEN, WA
FISHTRAP CREEK AT LYNDEN, WASH.
FISHTRAP CREEK AT E MAIN AT LYNDEN, WA PEPIN CREEK (EAST) AT LYNDEN, WA PEPIN CREEK AT LYNDEN, WA
FISHTRAP CREEK AT FRONT STREET AT LYNDEN, WA FISHTRAP CREEK AT FLYNN ROAD AT LYNDEN, WA FISHTRAP CREEK AT RIVER ROAD NEAR LYNDEN, WA BERTRAND CR AT BERTRAND H ST BRIDGE NR LYNDEN, WA BERTRAND CR AT WEST BADGER ROAD NEAR LYNDEN, WA BERTRAND CR AT BIRCH BAY LYNDEN ROAD NR LYNDEN, WA BERTRAND CREEK NEAR LYNDEN, WA
TENMILE CREEK TRIBUTARY NR BELLINGHAM, WASH.
TENMILE CREEK TRIB \#2 NR BELLINGHAM, WASH.
TENMILE CR BELOW FOURMILE CR NR FERNDALE, WA
TENMILE CREEK AT LAUREL, WASH.
TENMILE CREEK AT HEMMI ROAD, NEAR FERNDALE, WA TENMILE CREEK NR FERNDALE, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
484617	1220235	17110004
484719	1220118	17110004
484620	1220243	17110004
484225	1221000	17110004
484643	1220620	17110004
484709	1220644	17110004
485000	1220805	17110004
483952	1220756	17110004
484059	1220315	17110004
484018	1220818	17110004
484020	1220823	17110004
484015	1220828	17110004
484020	1220824	17110004
484040	1220955	17110004
484714	1221151	17110004
484838	1221213	17110004
485031	1221735	17110004
485121.1	1221738.2	17110004
484750	1222013	17110004
485127	1222015	17110004
485505	1222048	17110004
485724	1222404	17110004
485645	1222617	17110004
485506	1222512	17110004
485508	1222750	17110004
485514	1222904	17110004
490053	1222411	--
490010	1222422	--
485844	1222546	17110004
485752	1222549	17110004
485646	1222732	17110004
485652	1222824	17110004
485648	1222807	17110004
485620	1222840	17110004
485536	1222942	17110004
485451	1223110	17110004
485936.2	1223033.5	17110004
485750	1223026	17110004
485608	1223208	17110004
485527	1223139	17110004
485030	1222430	17110004
485035	1222430	17110004
485200	1222856	17110004
485150	1222945	17110004
485145	1223051	17110004
485115	1223225	17110004

Drainage Area (Miles2)
47.2
18.5
--
--
73.3
--
8.7
103
--
23
23.1
--
23.1
129
--
584
588
--
8.96
12.9
--
--
6.9
--
--
648
--
--
--
22.3
--
0.74
--
--
37.8
38.1
--
--
-
-7

Site - ID
12213030 12213050 12213095 12213100 12213140 12213155 12213500 12213950 12213980 12214000 12214050 12214500 12214550 12214900 12214990 12215000 12215100 2215500 12215650 12215700 12215900 12224000 12230500 12233000 12238000 12241000 12294500 12296000 12296500 2297000 12299500 12322300 12322400 12322560 12322640 12322680 12322900 12323000 12325200 2331800 12354500 12355500 12358500 12363000 12395000 12395500

Station Name

DEER CREEK NEAR FERNDALE, WA
TENMILE CREEK AT BARRETT ROAD NEAR FERNDALE, WA NOOKSACK RIVER NEAR FERNDALE, WASH
NOOKSACK RIVER AT FERNDALE, WASH
NOOKSACK RIVER AT BRENNAN WASH
KWINA SLOUGH AT FISH PEN CANAL NR MARIETTA CALIFORNIA CREEK NEAR CUSTER WA
SF DAKOTA CR AT DELTA LINE RD NR BIRCH BAY, WA NORTH FORK DAKOTA CREEK NEAR CUSTER, WA
DAKOTA CREEK NEAR BLAINE, WA
DAKOTA CREEK AT GILES ROAD NEAR BLAINE, WA SUMAS RIVER NEAR SUMAS, WASH. SUMAS RIVER AT SUMAS, WASH
JOHNSON CREEK AT HIGHWAY 9 AT SUMAS, WA SUMAS CREEK AT JOHNSON ST AT SUMAS, WA JOHNSON CREEK AT SUMAS, WA
SUMAS RIVER NEAR HUNTINGDON, B.C
SAAR CREEK NEAR SUMAS, WA
COPPER LAKE NEAR GLACIER, WA
CHILLIWACK RIVER NR VEDDER CROSSING, B.C.
SLESSE CREEK NEAR VEDDER CROSSING, B.C.
COLUMBIA RIVER AT DONALD, B.C
COLUMBIA RIVER AT REVELSTOKE, B.C
INCOMAPPLEAX RIVER NR BEATON, B.C
LOWER ARROW LAKE AT NEEDLES, B.C
COLUMBIA RIVER AT CASTLEGAR, B.C.
KOOTENAY RIVER NR SKOOKUMCHUCK, B.C
KOOTENAY RIVER AT FORT STEELE, B.C. BULL RIVER NR WARDNER B. C.
KOOTENAY RIVER AT WARDNER, B.C
ELK R AT PHILLIPS BRIDGE NR ELKO, B.C.
DUNCAN RIVER BLW B.B. CREEK,B.C
DUNCAN FOREBAY AT DUNCAN DAM, B.C
DUNCAN RIVER BLW LARDEAU RIVER, B.C. KOOTENAY LAKE AT QUEENS BAY, B.C
KOOTENAY RIVER AT NELSON (GAUGE NO. 10), B.C.
SLOCAN RIVER NR CRESCENT VALLEY, B.C
COLUMBIA RIVER AT BIRCHBANK, B.C.
LARDEAU RIVER AT MARBLEHEAD, B.C
CLARK FORK RIVER NEAR DRUMMOND, MT CLARK FORK R. AT ST. REGIS, MT
NORTH FORK FLATHEAD RIVER NEAR COLUMBIA FALLS, MT
MIDDLE FORK FLATHEAD RIVER NR WEST GLACIER, MT
FLATHEAD RIVER AT COLUMBIA FALLS, MT
PRIEST RIVER NEAR PRIEST RIVER ID
PEND OREILLE RIVER AT NEWPORT, ID

Latitude (Degrees)	Longitude (Degrees) 485043
485113	1223242
485114	1223420
485042	1223455
484910	1223443
484642	1223614
485518	1223933
485645	1223655
485704	1223812
485725	1223930
485747	1224051
485830	1221500
485934	1221510
485933.9	1221600
485957	1221602
485950	1221540
490009	1221350
485935	1221235
485507	1212702
490502	1212724
490421	1214158
512900	1171045
510029	1181309
504625	1174036
495227	1180535
491956	1174033
495438	1154408
493650	1153805
492935	1152150
492513	1152510
491254	1150638
503817	1170250
501520	1165651
501356	1165718
493916	1165547
493033	1171646
492940	1172004
491040	1174259
501547	1165802
464244	1131948
471807	1150511
482944	1140736
482943	1140033
482143	1141102
481231	1165449
481100	1170200

Drainage Area (Miles2)
--
--
786
786
790
--
6.85
--
18.4
--
33
34.1
--
-
23
57.6
9.76
--
131
62.7
3700
10400
387

2780
4350
578
5200
1720
499
--
1560
--
-700
34000
610
2500
10700
1550
1130
4460
902
24200

Site - ID 12395502 12395800 12395900 12395910 12395950 12396000 12396100 12396200 12396220 12396300 12396302 12396450 12396470 12396480 12396490 12396500 12396501 2396900 12396950 12397000 12397100 12397500 12398000 12398090 12398500 12398550 12398560 12398600 12398900 12399000 2399300 12399500 12399510 12399550 12399600 12399900 12400000 12400500 12400520 12400900 2401500 12402000 12402500 12403000 12403500 12403700

Station Name
PEND OREILLE R AT US HWY 2 AT NEWPORT, WASH. DEER CREEK NEAR DALKENA, WASH.
DAVIS CREEK NEAR DALKENA, WASH.
DAVIS CR NR USK, WASH
PEND OREILLE RIVER AT CUSICK, WASH.
CALISPELL CREEK NEAR DALKENA, WASH.
WINCHESTER CREEK NEAR CUSICK, WASH
SMALLE CREEK NEAR CUSICK, WA
CALISPEL RIVER AT CUSICK, WASH.
TRIMBLE CREEK NEAR CUSICK, WA
TACOMA CR NR CUSICK, WASH.
LITTLE MUDDY CREEK AT IONE, WASH.
BOX CANYON DAM HEADWATER (AUXILIARY GAGE) NR ION BOX CANYON PRPLNT HDWTR NR IONE, WASH
PEND OREILLE R. BLW BOX CANYON TAILWATER NR IONE PEND OREILLE R BEL BOX CANYON NR IONE, WASH.
PEND OREILLE R. BLW BOX CANYON NR IONE, WASH SULLIVAN C ABV OUTLET C NR METALINE FALLS, WASH. HARVEY CREEK NEAR NEAR METALINE FALLS, WA SULLIVAN LAKE NR METALINE FALLS, WA
OUTLET CREEK NEAR METALINE FALLS, WASH. SULLIVAN CREEK NEAR METALINE FALLS, WASH SULLIVAN CREEK AT METALINE FALLS, WASH PEND OREILLE R AT METALINE FALLS, WASH. PEND OREILLE R B Z CNYN NR METALINE FLLS, WASH BOUNDARY RESERVOIR NEAR METALINE FALLS, WA. BOUNDARY POWER PLANT T.W. NR METALINE FALLS,WASH PEND OREILLE RIVER AT INTERNATIONAL BOUNDARY SALMO RIVER NEAR SALMO, B.C.
SALMO RIVER NEAR WANETA, B.C
PEND OREILLE RIVER AT WANETA, B.C.
COLUMBIA RIVER AT INTERNATIONAL BOUNDARY
COLUMBIA R AUXIL AT INTERNA BNDRY, WASH.
COLUMBIA R BLW RAPIDS AT INTERNATIONAL BOUNDARY DEEP CREEK NEAR NORTHPORT, WASH.
BIG SHEEP CREEK NEAR ROSSLAND, B.C
SHEEP CREEK NR VELVET, WASH. SHEEP CREEK NEAR NORTHPORT, WASH COLUMBIA RIVER AT NORTHPORT, WASH.
MYERS CREEK NEAR CHESAW, WA KETTLE RIVER NR FERRY, WA
CURLEW LAKE NEAR MALO, WA CURLEW CREEK NR MALO, WASH CURLEW CR NR CURLEW, WASH. KETTLE R AT CURLEW, WASH. THIRD CREEK NEAR CURLEW, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Area (Miles2)
481107	1170200	17010216	24200
481149	1171738	17010216	4.75
481351	1171714	17010216	16.8
481640	1171550	17010216	--
482010	1171731	17010216	--
481440	1172026	17010216	68.3
481652	1172144	17010216	16.8
481940	1172100	17010216	25.1
482015	1171815	17010216	--
482120	1172025	17010216	3.5
482320	1171845	17010216	--
484358	1172144	17010216	11.3
484649	1172432	17010216	--
484649	1172447	17010216	--
484649	1172442	17010216	24900
484652	1172455	17010216	24900
484649	1172442	17010216	24900
485047	1171709	17010216	70.2
484610	1171743	17010216	--
485021	1171715	17010216	51.2
485042	1171712	17010216	51.5
485110	1171720	17010216	122
485140	1172150	17010216	142
485155	1172220	17010216	--
485850	1172040	17010216	25200
485920	1172055	17010216	--
485920	1172055	17010216	25200
485956	1172109	17010216	25200
490407	1171637	--	476
490149	1172226	--	500
490015	1173705	--	--
490003	1173742	17020001	59700
485817	1173824	17020001	59700
485941	1173806	17020001	59700
485547	1174459	17020001	191
490100	1175640	--	134
485710	1175250	17020001	171
485640	1174650	17020001	225
485521	1174632	17020001	60200
485955	1190108	17020002	90.9
485853	1184555	17020002	2200
484520	1183930	17020004	65.9
484600	1183910	17020004	66.8
484625	1183845	17020004	--
485310	1183600	17020002	--
485221	1182520	17020002	1.18

Site - ID 12404000 12404500 12404860 12404900 12405000 12405400 12405500 12406000 12406500 12407000 12407500 12407520 12407530 12407550 12407600 12407680 12407700 12408000 2408190 12408195 12408200 12408205 12408210 12408214 12408216 12408300 12408400 12408410 12408420 2408440 12408450 12408500 12408700 12409000 12409200 12409290 12409500 12409900 12409920 12410000 12410050 12410500 12410600 12410650 12410700 2410710

Station Name

KETTLE RIVER AT CASCADE, B.C. KETTLE RIVER NEAR LAURIER, WASH PIERRE LAKE NEAR ORIENT, WASH. KETTLE RIVER NR BARSTOW, WASH KETTLE RIVER AT BOYDS, WASH NANCY CREEK NEAR KETTLE FALLS, WASH COLUMBIA RIVER AT KETTLE FALLS, WASH DEER LAKE NEAR LOON LAKE, WASH LOON LK NR LOON LK, WASH. SHEEP CR AT LOON LAKE, WASH SHEEP CREEK AT SPRINGDALE, WASH. DEER CREEK NEAR VALLEY, WASH JUMPOFF JOE LAKE NEAR VALLEY, WASH WAITTS LAKE NEAR VALLEY, WASH. THOMASON CREEK NEAR CHEWELAH, WASH COLVILLE R AT CHEWELAH, WASH CHEWELAH CREEK AT CHEWELAH, WASH COLVILLE RIVER AT BLUE CREEK, WASH FRATER LAKE NEAR TIGER LEO LAKE NEAR TIGER PATCHEN (BIGHORN) C NR TIGER, WASH. HERITAGE LAKE NEAR TIGER
THOMAS LAKE NEAR TIGER GILLETTE LAKE NEAR TIGER SHERRY LAKE NEAR TIGER LITTLE PEND OREILLE RIVER NEAR COLVILLE, WASH NARCISSE CREEK NEAR COLVILLE, WASH LITTLE PEND OREILLE R AT ARDEN, WASH HALLER C NR ARDEN, WASH
WHITE MUD LAKE NEAR COLVILLE, WA MILL CREEK BELOW FORKS, NEAR COLVILLE, WA MILL CREEK NEAR COLVILLE, WASH
MILL CR AT MOUTH NR COLVILLE, WASH.
COLVILLE RIVER AT KETTLE FALLS, WASH
BARNABY CREEK NEAR RICE, WASH.
LITTLE JIM CREEK NEAR DAISY, WASH
HALL CREEK AT INCHELIUM, WASH.
N. TWIN LAKE NR INCHELIUM, WA.
S. TWIN LAKE NR INCHELIUM, WA.

STRANGER CREEK AT METEOR, WASH. ROUND LAKE NEAR INCHELIUM STRANGER CREEK AT INCHELIUM SOUTH FORK HARVEY CREEK NR CEDONIA, WASH NORTH FORK HARVEY CREEK NR CEDONIA, WASH HARVEY CREEK NEAR CEDONIA WA NEZ PERCE CREEK NEAR KEWA, WASH

Latitude	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
490135	1181220	17110001	3550
485904	1181255	17020002	3800
485351	1180814	17020002	26.8
484705	1180727	17020002	4040
484320	1180720	17020002	4070
483920	1180640	17020001	11.9
483720	1180700	17020001	64500
480628	1173618	17020003	18.2
480320	1173830	17020003	14.1
480335	1173910	17020003	37.9
480328	1174504	17020003	48.2
480706	1174752	17020003	36
480811	1174106	17020003	2.35
481125	1174713	17020003	14.2
481738	1174012	17020003	4.08
481538	1174252	17020003	295
481700	1174250	17020003	94.1
481910	1174910	17020001	428
483918	1172911	17020003	0.68
483846	1173006	17020003	2.94
483832	1173105	17020003	1.65
483747	1173154	17020003	10.2
483707	1173239	17020003	12.7
483643	1173235	17020003	14.9
483624	1173236	17020003	15.3
482758	1174453	17020003	132
483052	1174357	17020003	11.1
483005	1175250	17020003	--
482802	1175424	17020003	37
483110	1174845	17020003	15.3
483645	1174650	17020003	67.9
483444	1175156	17020003	83
483425	1175635	17020003	146
483540	1180341	17020003	1010
482604	1181331	17020001	45.9
482204	1181143	17020001	4.04
481841	1181239	17020001	161
481647	1182245	17020001	30.2
481525	1182232	17020001	36.9
481540	1181700	17020001	50.9
481733	1181904	17020001	5.02
481732	1181120	17020001	80.2
481026	1180642	17020001	18.1
481236	1180449	17020001	6.96
481025	1180655	17020001	29.9
481027	1181446	17020001	22.6

Site - ID
12410715 12410770 12410775 12410780 12410785 12410790 12410800 12414500 12419000 12419495 12419500 12419800 12420000 12420300 12420500 12420800 12421000 12421200 12421500 12421700 12422000 12422010 12422100 12422400 12422500 12422990 12423000 12423500 12423550 12423700 12423900 12423980 12424000 12424003 12424100 12424200 12424500 12425000 12425500 12426000 12426500 12427000 12427500 12428000 12428500 12428600

Station Name

FALLS CREEK NEAR KEWA, WASH
WILMONT CREEK NEAR HUNTERS, WASH. NINEMILE CREEK NEAR FRUITLAND, WASH LITTLE NINEMILE CREEK NEAR FRUITLAND, WASH. SIXMILE CREEK NEAR MILES, WASH.
THREEMILE CREEK NEAR MILES, WASH
COUER D ALENE RIVER NEAR MAGEE RANGER STATION, ID ST. JOE RIVER AT CALDER ID
SPOKANE RIVER NR POST FALLS, ID.
SPOKANE R AT ID-WA STATE LINE NR OTIS ORCHARDS, WA SPOKANE R AB LIBERTY BRIDGE NR OTIS ORCHARDS, WA NEWMAN LAKE NEAR NEWMAN LAKE, WASH.
LIBERTY LAKE AT LIBERTY LAKE, WASH
SPOKANE R AT HARVARD RD BR NR OTIS ORCHARDS, WA SPOKANE RIVER AT GREENACRES, WASH SPOKANE R AT SULLIVAN RD BR NR TRENTWOOD, WASH SPOKANE RIVER AT TRENT WASH
SPOKANE R. AT TRENT BRIDGE AT TRENTWOOD SPOKANE RIVER BLW TRENT BRG NR SPOKANE, WASH SPOKANE RIVER AT ARGONNE RD BR AT SPOKANE, WASH SPOKANE RIVER BLW GREEN ST AT SPOKANE WASH SPOKANE R. AT MISSION AVE. AT SPOKANE SPOKANE RIVER AT TRENT AVE BR AT SPOKANE, WASH SPOKANE FIELD OFFICE DCP TEST STATION SPOKANE RIVER AT SPOKANE, WASH.
HANGMAN CREEK AT STATE LINE ROAD NEAR TEKOA, WA HANGMAN (LATAH) CREEK AT TEKOA, WA
NF HANGMAN (LATAH) CREEK AT TEKOA WA HANGMAN CREEK TRIBUTARY NEAR LATAH, WASH. SO FK ROCK CR TRIBUTARY NR FAIRFIELD, WASH. STEVENS CREEK TRIBUTARY NR MORAN, WASH.
HANGEMAN CR NR SPOKANE, WASH
HANGMAN CREEK AT SPOKANE, WASH
HANGMAN CR. AT MOUTH AT SPOKANE SPOKANE R. AT FT. WRIGHT BR. AT SPOKANE SPOKANE R. AT RIVERSIDE STATE PARK AT SPOK,WA SPOKANE R AT 7 MILE BRIDGE NR SPOKANE WASH MEDICAL LAKE AT MEDICAL LAKE, WA DEEP CREEK NEAR SPOKANE, WA SPOKANE R. BLW. NINE MILE DAM AT SPOKANE LITTLE SPOKANE RIVER AT SCOTIA, WA LITTLE SPOKANE RIVER AT ELK, WASH. DIAMOND LAKE NEAR NEWPORT, WASH SACHEEN LAKE NEAR NEWPORT, WASH. ELOIKA LAKE NEAR ELK, WASH WEST BRANCH LITTLE SPOKANE RIVER NR ELK, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
480859	1181611	17020001	13.1
480434	1181929	17020001	51.1
480250	1182606	17020001	106
480104	1182438	17020001	6.12
475823	1182222	17020001	10.8
475618	1182206	17020001	106
475810	1161125	17010301	--
471629	1161117	--	1030
474211	1165837	17010305	3840
474155	1170240	17010305	3870
474056	1170505	17010305	3880
474607	1170440	17010305	28.6
473909	1170520	17010305	13.3
474100	1170600	17010305	--
474045	1170925	17010305	4150
474022	1171143	17010305	--
474120	1171330	17010305	4210
474132	1171403	17010305	4200
474150	1171435	17010305	4200
474130	1171700	17010305	--
474040	1172220	17010305	--
474019	1172312	17010305	4220
473930	1172600	17010305	--
473934	1172653	17010308	--
473934	1172653	17010305	4290
471210	1170223	17010306	--
471320	1170435	17060109	130
471335	1170430	17060109	60
471916	1171042	17010306	2.18
472054	1170406	17010306	0.59
473335	1172055	17010306	2.02
473515	1172405	17010306	--
473910	1172655	17010306	689
473917	1172712	17010306	689
474050	1172707	17010307	4990
474148	1172948	17010307	5010
474425	1173110	17010307	5020
473423	1174100	17010307	--
474030	1174100	17010307	76.6
474634	1173236	17010307	5200
480620	1170910	17010216	74.2
480120	1171619	17010308	115
480708	1171305	17010308	17.4
480950	1171803	17010308	33.5
480145	1172225	17010308	101
480025	1172146	17010308	101

Site - ID 12429000 12429200 12429600 12429800 12430000 12430100 12430150 12430200 12430250 12430300 12430320 12430350 12430370 12430400 12430500 12430600 12430650 12430700 12430800 12431000 12431010 12431100 12431200 12431500 12431900 12432000 12432500 12433000 12433100 12433200 12433300 12433500 12433540 12433542 12433546 12433548 12433550 12433552 12433554 12433556 12433558 12433559 12433560 12433561 12433562 12433580

Station Name

LITTLE SPOKANE RIVER AT MILAN, WA BEAR CREEK NEAR MILAN, WASH DEER CREEK NEAR CHATTAROY, WASH MUD CREEK NEAR DEER PARK, WASH. WETHEY CREEK NEAR DEER PARK, WA DRAGOON CREEK AT MOUTH, NR CHATTAROY WA LITTLE SPOKANE R BLW DRAGOON CR, NR CHATTEROY, WA LITTLE SPOKANE RIVER AT BUCKEYE, WASH LITTLE SPOKANE RIVER NEAR BUCKEYE, WASH LITTLE SPOKANE R ABV DEADMAN CR NR DARTFORD, WA LITTLE SPOKANE R AT L SPOK DR NR DARTFORD, WA DEADMAN CREEK NEAR MEAD, WA BIGELOW GULCH NEAR SPOKANE, WASH. DEADMAN CR BLW U.S. HWY 195, NR MEAD, WA DEEP CREEK AT COLBERT, WA
LITTLE SPOKANE R BLW DEADMAN CR, NR DARTFORD, WA LITTLE SPOKANE R AT GREENLEAF DR NR DARTFORD, WA LITTLE SPOKANE R AB WANDERMERE CR AT DARTF WANDERMERE LAKE CR NR DARTFORD, WA LITTLE SPOKANE RIVER AT DARTFORD, WASH. LITTLE SPOKANE R AT DARTFORD DR NR DARTFORD, WA LITTLE CREEK AT DARTFORD, WASH. LITTLE SPOKANE BLW COUNTRY CLUB NR DARTFORD, WA LITTLE SPOKANE RIVER NEAR DARTFORD, WASH. LITTLE SPOKANE R. NR. MOUTH NR. SPOKANE LITTLE SPOKANE RIVER NEAR SPOKANE, WA LONG LK AT LONG LK WA SPOKANE RIVER AT LONG LAKE, WASH CHAMOKANE CREEK NEAR SPRINGDALE, WASH. CHAMOKANE CR BELOW FALLS NEAR LONG LAKE, WASH. SPRING CR TRIBUTARY NR REARDAN, WASH. SPOKANE R BLW LITTLE FALLS NR LONG LAKE, WASH GS-1 UNNAMED TRIB TO BLUE CRK NR WELLPINIT BLUE CR ABV MIDNITE MINE DRAINAGE NR WELLPINIT, WA BELOW HAUL RD AT MIDNITE MINE NR WELLPINIT GS-2 EAST DRAINAGE FR MIDNITE MINE NR WELLPINIT D-11 WASTEPOND AT MIDNITE MINE NR WELLPINIT D-20 BELOW DAM AT MIDNITE MINE NR WELLPINIT D-15 WEST DRAINAGE FR MIDNITE MINE NR WELLPINIT D-10 MIDNITE MINE DRAINAGE NEAR WELLPINIT, WASH BLUE CR BLW MIDNITE MINE DRAINAGE NR WELLPINIT, WA BLUE CR BTW MIDNITE MINE \& OYACHEN CR NR WELLPINIT BLUE CR ABV OYACHEN CR NR WELLPINIT D-7,WA BLUE CR NR MOUTH NR WELLPINIT, WA BLUE CR ABV LK ROOSEVELT NR WELLPINIT D-8, WA COTTONWOOD (HAWK) C AT DAVENPORT, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
475800	1172000	17010308	274
475548	1172027	17010308	10.5
475325	1172000	17010308	31.9
475408	1173408	17010308	1.83
475300	1172830	17010308	12
475229	1172209	17010308	177
475226	1172203	17010308	511
475034	1172226	17010308	--
474926	1172224	17010308	--
474819	1172240	17010308	--
474754	1172253	17010308	--
474645	1172105	17010308	80.3
474310	1171934	17010308	2.07
474653	1172149	17010308	94.7
474915	1172045	17010308	32.8
474736	1172303	17010308	659
472958	1172352	17010308	--
474705	1172402	17010308	660
474701	1172404	17010308	4.32
474705	1172412	17010308	665
474705	1172415	17010308	--
474705	1172500	17010308	11.9
474650	1172945	17010308	--
474650	1172945	17010308	698
474700	1173143	17010308	700
474725	1173140	17010308	701
475012	1175020	17010307	6020
475012	1175025	17010307	6020
475944	1174328	17010307	99.9
475142	1175128	17010307	179
474449	1175131	17010307	1.14
474930	1175625	17010307	6220
475539	1180448	17010307	--
475528	1180518	17010307	6
475533	1180448	17010307	--
475548	1180520	17010307	--
475607	1180535	17010307	--
475606	1180535	17010307	--
475552	1180535	17010307	--
475527	1180520	17010307	1.3
475524	1180520	17010307	7.3
475437	1180621	17010307	8.4
475404	1180649	17010307	--
475349	1180805	17010307	19.1
475340	1180819	17010307	--
473931	1180809	17020001	23.2

Site - ID
12433790 12433800 12433810 12433890 12433896 12433930 12433950 12433995 12434000 12434050 12434100 12434110 12434120 12434130 12434180 12434230 12434300 12434320 12434380 12434450 12434500 12434520 12434590 12434600 12434700 12434800 12434900 12435000 12435020 12435050 12435100 12435500 12435810 12435840 12435850 12436000 12436500 12436540 12436542 12436550 12436850 12436895 12436900 12437000 12437500 12437505

Station Name
SANPOIL R ABV GRANITE CR NR REPUBLIC, WASH GRANITE CREEK NEAR REPUBLIC, WASH SANPOIL R BLW GRANITE CR NR REPUBLIC, WASH SANPOIL R ABV 13 MILE CR NR REPUBLIC, WASH.
THIRTEENMILE CREEK NR. REPUBLIC
BAILEY CREEK NR AENEAS WASH
CRAWFISH LAKE NEAR DISAUTEL LOST CREEK NR. DISAUTEL
LOST CREEK NEAR AENEAS, WA
GOLD LAKE NEAR WEST FORK
GOLD CREEK NEAR REPUBLIC, WASH
WEST FORK SANPOIL RIVER NEAR REPUBLIC, WASH.
SEVENTEENMILE CREEK NR. REPUBLIC
NINETEENMILE CREEK NR. REPUBLIC
NORTH NANAMKIN CREEK NR. KELLER
THIRTYMILE CREEK NR. KELLER
BRIDGE CREEK NEAR KELLER, WASH
BRIDGE CREEK AT MOUTH NR. KELLER CACHE CREEK NR. KELLER
IRON CREEK NR. KELLER
SANPOIL RIVER NEAR KELLER, WASH.
BRUSH CREEK NR. KELLER
SANPOIL R ABV JACK CR AT KELLER, WASH
JACK CREEK AT KELLER, WASH.
COPPER CREEK NR. KELLER
MEADOW CREEK NR. KELLER
SILVER CREEK NR. KELLER
SANPOIL R AT KELLER, WASH.
JOHN TOM CREEK NR. KELLER
DICK CREEK NR. KELLER
MANILA CREEK NR. KELLER
FEEDER CANAL AT GRAND COULEE, WASH
SCBID EL 85 XX WASTEWAY NR MESA, WA
SCBID EL 85 JJ LATERAL AT HEAD NR MESA, WA
SCBID EL85 CANAL BLW EL85JJ LATERAL NR MESA, WA FRANKLIN ROOSEVELT LAKE AT GRAND COULEE DAM, WA COLUMBIA RIVER AT GRAND COULEE, WASH.
MCGINNIS LAKE NEAR SEATONS GROVE
PETER DAN CREEK AT ELMER CITY
BUFFALO LAKE NEAR COLVILLE INDIAN AGENCY
PARMENTER CR NR NESPELEM WASH
MILL CREEK BELOW ARMSTRONG CR NR NESPELEM, WA MILL CREEK NR. NESPELEM
NESPELEM CANAL NR. NESPELEM
NESPELEM RIVER AT NESPELEM, WASH
NESPELEM R BELOW MILLPOND AT NESPELEM, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
483904	1184216	17020004	--
483945	1184945	17020004	4.25
483658	1184343	17020004	--
482837	1184341	17020004	263
482838	1184341	17020004	16.9
483348	1190158	17020006	8.04
482847	1191236	17020004	0.83
482826	1190149	17020004	--
482930	1190100	17020004	84
482215	1185516	17020004	3.5
482718	1184756	17020004	47.4
482733	1184457	17020004	308
482619	1184411	17020004	28.9
482455	1184412	17020004	4.41
481839	1184414	17020004	15.7
481540	1184053	17020004	24.9
481425	1183549	17020004	18.4
481325	1184119	17020004	31.6
481019	1184221	17020004	7.72
480812	1184113	17020004	9.23
480628	1184151	17020004	880
480620	1184209	17020004	6.21
480504	1184125	17020004	--
480454	1184118	17020004	8.17
480416	1183955	17020004	9.02
480355	1184022	17020004	7.85
480301	1183919	17020004	5.11
480505	1184126	17020004	928
480147	1183924	17020004	7.47
480033	1184012	17020004	6.8
480026	1184149	17020004	21.2
475705	1185940	17020001	--
463541	1185927	--	--
463805	1185920	--	--
463806	1185922	--	--
475720	1185902	17020005	74700
475756	1185854	17020005	74700
480158	1185349	17020005	4
480042	1185655	17020005	15.5
480316	1185225	17020005	13.7
481506	1185847	17020005	6.94
481328	1190004	17020005	27
481234	1185905	17020005	29
481047	1185844	17020005	--
481035	1185852	17020005	122
480955	1185846	17020005	123

Site - ID 12437530 12437590 12437600 12437690 12437700 12437900 12437930 12437940 12437950 12437960 12437980 12438000 12438500 12438700 12439000 12439100 12439150 12439200 12439300 12439350 12439400 12439500 12439600 12440000 12441000 12441500 12441700 12441800 12442000 12442200 12442300 12442310 12442400 12442500 12443000 12443500 12443600 12443700 12443800 12443980 12444000 12444100 12444400 12444490 12444550 12444700

Station Name

OWHI LAKE NR NESPELEM
LITTLE NESPELEM RIVER NR. NESPELEM
NESPELEM RIVER AT MOUTH NR. NESPELEM
COYOTE CREEK NR. NESPELEM
GOOSE LAKE NEAR MONSE
RUFUS WOODS LK AT BRIDGEPORT WASH EAST FORK FOSTER CREEK AT LEAHY, WASH EAST FOSTER CREEK AT BELL BUTTE ROAD NR LEAHY, WA EAST FORK FOSTER CREEK TRIBUTARY NR BRIDGEPORT, WA WEST FORK FOSTER CREEK NR BRIDGEPORT, WASH.
WEST FORK FOSTER CR AB EAST FORK NR BRIDGEPORT, WA COLUMBIA RIVER AT BRIDGEPORT WASH.
OKANAGAN RIVER AT OKANAGAN FALLS, B.C
OKANOGAN RIVER NEAR OLIVER, B.C.
OSOYOOS LAKE NEAR OROVILLE, WASH.
OKANOGAN RIVER BELOW OSOYOOS LAKE NR OROVILLE, WA OKANOGAN R AT BRIDGE ST AT OROVILLE, WASH DRY CREEK TRIB NR MOL SON WASH
TONASKET CREEK AT OROVILLE, WASH
OKANOGAN RIVER BELOW TONASKET CR AT OROVILLE, WA OKANOGAN RIVER AT ZOSEL MILLPOND AT OROVILLE, WA OKANOGAN RIVER AT OROVILLE, WASH.
SIMILKAMEEN RIVER AT PRINCETON B.C.
SINLAHEKIN CR ABV BLUE LAKE NEAR LOOMIS, WASH SINLAHEKIN CR AT TWIN BR NR LOOMIS WASH SINLAHEKIN CR NR LOOMIS WASH
MIDDLE FORK TOATS COULEE CR NEAR LOOMIS, WASH OLIE CREEK NEAR LOOMIS, WASH.
TOATS COULEE CREEK NEAR LOOMIS, WASH
WHITESTONE IRR CANAL NR LOOMIS WASH SINLAHEKIN CR ABV CHOPAKA CR NEAR LOOMIS, WASH CHOPAKA LAKE NR NIGHTHAWK,WASH
PALMER LAKE NR NIGHTHAWK, WASH SIMILKAMEEN RIVER NEAR NIGHTHAWK, WASH OROVILLE TONASKET IRR DST CANAL N OROVILLE WASH SIMILKAMEEN RIVER NEAR OROVILLE, WASH
SIMILKAMEEN R AT OROVILLE, WASH
SPECTACLE LAKE TRIB NR LOOMIS, WASH
SPECTACLE LAKE NR LOOMIS,WASH
WANNACUT LAKE NR OROVILLE, WASH
WHITESTONE LAKE NEAR TONASKET, WASH. WHITESTONE CREEK NEAR TONASKET, WASH. SIWASH CR TRIB NR TONASKET, WASH,
BONAPARTE CREEK NEAR WAUCONDA, WASH.
BONAPARTE CR AT TONASKET, WASH AENEAS LAKE NEAR TONASKET, WASH.

Latitude (Degrees)	Longitude (Degrees) 481322	Hydrologic Unit (OWDC) 1185333	Drainage Area (Miles2)
480723	1185839	17020005	13.2
480738	1190132	17020005	90.4
480848	1190634	17020005	224
480937	1191957	17020005	23.5
475940	1193805	17020005	75400
475445	1192250	17020005	35.4
475655	1193024	17020005	--
475700	1193750	17020005	4.75
475305	1194250	17020005	28
475704	1193935	17020005	--
480024	1193951	17020005	75700
492026	1193440	--	2650
490653	1193350	--506	2930
485724	1192618	17020006	3130
485635	1192545	17020006	3130
485620	1192536	17020006	3130
485453	1191244	17020006	1.68
485635	1192445	17020006	60.1
485610	1192530	17020006	3200
485555	1192505	17020006	3200
485551	1192509	17020006	3200
492147	1203120	--	730
484130	1194300	17020007	41.7
484410	1194020	17020007	75.5
484650	1193900	17020007	86
485230	1195350	17020007	17.1
485059	1194354	17020007	1.42
485001	1194132	17020007	130
484950	1194125	17020007	--
485110	1193850	17020007	256
485413	1194133	17020007	--
485430	1193650	17020007	293
485905	1193702	17020007	3550
485700	1192800	17020007	--
485740	1193000	17020007	3580
485605	1192627	17020007	3550
484837	1193310	17020006	4.59
484852	1193115	17020006	17.2
485205	1193054	17020006	--
484714	1192749	17020006	52.3
484705	1192600	17020006	55.4
484312	1192212	17020006	0.66
483926	1191202	17020006	96.6
484205	1192630	17020006	--
484037	1193028	17020006	32.4

Site - ID
12444990 12445000 12445500 12445700 12445750 12445800 12445900 12445920 12445930 12445939 12445940 12445941 12445942 12445944 12445945 12445948 12445950 12445990 12446000 12446480 12446500 12447000 12447100 12447200 12447270 12447300 12447306 12447350 12447370 12447374 12447380 12447382 12447383 12447384 12447385 12447386 12447387 12447388 12447390 12447394 12447400 12447430 12447440 12447450 12447500 12447600

Station Name

OKANOGAN R AT JANIS, WASH
OKANOGAN RIVER NEAR TONASKET, WASH.
JOHNSON CREEK NEAR RIVERSIDE, WA
WANNACOTT CREEK NR. OMAK
SUMMIT LAKE NEAR DISAUTEL
OMAK CR TRIB NR DISAUTEL, WASH
OMAK CREEK NEAR OMAK, WASH
KARTER CREEK ABV NELSON CREEK NR OMAK, WA KARTAR CREEK NR. OMAK
NO NAME CREEK NEAR SOURCE NEAR OMAK,WASH
NO NAME CREEK DIVERSION NEAR OMAK,WASH
NO NAME CREEK BELOW DIVERSION NEAR OMAK,WASH
NO NAME CREEK DIVERSION RETURN NEAR OMAK,WASH NO NAME CREEK AT GRANITE LIP NEAR OMAK,WASH
NO NAME CREEK NR. OMAK
NO NAME CREEK AT MOUTH NR. OMAK
OMAK LAKE NR OMAK, WA
OMAK CREEK AT OMAK
OKANOGAN RIVER AT OKANOGAN, WASH CONCONCULLY RESERVOIR NR OMAK, WASH
SALMON CREEK NEAR CONCONULLY, WASH.
SALMON CREEK NEAR OKANOGAN, WASH.
OKANOGAN RIVER TRIB AT MALOTT, WASH.
OKANOGAN RIVER AT MALOTT, WA
SUMMIT CREEK NEAR MALOTT, WA
OKANOGAN RIVER NEAR MALOTT, WASH.
SOAP LAKE NEAR MALOTT
METHOW RIVER ABOVE ROBINSON CREEK NR MAZAMA, WA LOST RIVER NEAR MAZAMA, WA
METHOW R BLW GATE CR NR MAZAMA, WASH
PINE CREEK NEAR MAZAMA, WASH
EARLY WINTERS CREEK NR MAZAMA, WA
METHOW RIVER ABOVE GOAT CR NEAR MAZAMA, WA
GOAT CREEK NEAR MAZAMA, WA
METHOW R AT WEEMAN BR NR MAZAMA, WASH
METHOW RIVER ABOVE WOLF CREEK NEAR WINTROP, WA WOLF CREEK BELOW DIVERSION NEAR WINTHROP, WA PATTERSON LAKE NR WINTHROP
ANDREWS CREEK NEAR MAZAMA, WASH
LAKE CREEK NEAR WINTHROP, WA
DOE CR NR WINTHROP, WASH.
ORTELL CR NR WINTHROP, WASH
EIGHTMILE CREEK NEAR WINTHROP, WA
CHEWUCH RIVER AT EIGHTMILE RANCH NEAR WINTHROP, WA CHEWUCH RIVER BELOW BOULDER CR NEAR WINTHROP, WA CHEWUCH RIVER ABOVE CUB CREEK NEAR WINTHROP, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Area (Miles2)
483857	1192810	17020006	--
483757	1192738	17020006	7260
482950	1193130	17020006	68.2
482552	1192742	17020006	19.4
481705	1190852	17020006	0.49
482016	1191016	17020006	4.12
482202	1192638	17020006	119
481316	1191608	17020006	--
481452	1191945	17020006	48.8
482112	1192633	17020006	--
482043	1192606	17020006	--
482043	1192629	17020006	--
482025	1192624	17020006	--
481946	1192606	17020006	--
481940	1192602	17020006	3.98
481922	1192546	17020006	7.11
481437	1192026	17020006	--
482412	1193007	17020006	--
482140	1193450	17020006	7900
483216	1194450	17020006	--
483200	1194450	17020006	121
482400	1193700	17020006	150
481650	1194200	17020006	2.66
481653	1194212	17020006	8080
482234	1194610	17020006	17.4
480610	1194230	17020006	8220
481342	1193842	17020006	16.1
483934	1203223	17020008	--
483919	1203018	17020008	146
483746	1202750	17020008	--
483450	1203735	17020008	4.63
483555	1202631	17020008	80.2
483432	1202305	17020008	373
483431	1202243	17020008	--
483240	1201920	17020008	--
482929	1201349	17020008	--
482900	1201824	17020008	32.5
482759	1201459	17020008	--
484923	1200841	17020008	22.1
484525	1200809	17020008	--
484041	1200759	17020007	3.8
483945	1201510	17020008	4.05
483618	1201001	17020008	--
483602	1200952	17020008	--
483436	1201026	17020008	466
483353	1201035	17020008	466

Site - ID
12447900 12448000 12448500 12448610 12448620 12448700 12448850 12448900 12448990 12448992 12448996 12448998 12449000 12449500 12449510 12449600 12449700 12449710 12449760 12449780 12449790 12449795 12449900 12449910 12449950 12449954 12450000 12450500 12450650 12450660 12450700 12450720 2450950 12451000 2451200 12451500 12451600 12451620 12451650 12451700 12451800 12452000 12452500 12452750 12452800 12452880

Station Name

PEARRYGIN LAKE NR WINTHROP
CHEWUCH RIVER AT WINTHROP, WA
METHOW RIVER AT WINTHROP, WASH
(BIG) TWIN LAKE NR WINTHROP
METHOW RIVER MVID EAST DIVERSION NR WINTHROP, WA WILLIAMS CR NR TWISP WASH. TWISP RIVER ABOVE BÚTTERMILK CREEK NEAR TWISP, WA LITTLE BRIDGE CR NR TWISP, WASH
TWISP RIVER ABOVE NEWBY CREEK NEAR TWISP, WA
TWISP RIVER TVPI DIVERSION NEAR TWISP, WA
TWISP RIVER MVID WEST DIVERSION NR TWISP, WA
TWISP RIVER NEAR TWISP, WASH
TWISP RIVER AT TWISP, WA
METHOW RIVER AT TWISP, WA
METHOW RIVER NR TWISP, WASH
BEAVER CREEK BELOW SOUTH FORK, NEAR TWISP, WASH. BEAVER CREEK NEAR TWISP, WASH
BEAVER CREEK NEAR MOUTH NEAR TWISP WA METHOW RIVER AT CARLTON, WA LIBBY CREEK NEAR CARLTON, WA RAINY CREEK NEAR METHOW, WASH GOLD CREEK NEAR CARLTON, WA METHOW RIVER TRIBUTARY NR METHOW, WASH. METHOW RIVER TRIB NO. 2 NEAR METHOW, WASH METHOW RIVER NR PATEROS, WASH. METHOW R AT 2ND BRIDGE NR PATEROS WASH ALTA LAKE NR PATEROS,WASH METHOW RIVER AT PATEROS, WASH. WELLS POWER PLANT H. W. NR. PATEROS, WASH WELLS POWERPLANT TAILWATER NEAR PATEROS, WASH. COLUMBIA RIVER BELOW WELLS DAM, WASH
ANTOINE CREEK NEAR AZWELL, WA UPPER DEE DEE LAKE NEAR STEHEKIN, WA STEHEKIN RIVER AT STEHEKIN, WASH
LAKE CHELAN AT PURPLE POINT AT STEHEKIN, WASH. RAILROAD CREEK AT LUCERNE, WASH. SAFETY HARBOR CREEK NEAR MANSON, WASH. GRADE CREEK NEAR MANSON, WASH GOLD CREEK NEAR MANSON, WASH. ANTILON LK FEEDER SYSTEM NR MANSON WASH WAPATO LAKE NR MANSON
LAKE CHELAN AT CHELAN, WA
CHELAN RIVER AT CHELAN, WASH
ENTIAT RIVER AT SULLIVANS BRIDGE NR ARDENVOIR, WA ENTIAT RIVER NEAR ARDENVOIR WASH TILLICUM CR NR ARDENVOIR, WASH.

Latitude (Degrees)	Longitude (Degrees) H82932	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
482838	1200946	17020008	--
482825	1201034	17020008	525
482635	1201139	17020008	1010
482508	1200824	17020008	--
482350	1202745	17020008	--
482142	1202024	17020008	--
482425	1201940	17020008	16.6
482251	1201538	17020008	207
482250	1201431	17020008	--
482212	1201131	17020008	--
482212	1200851	17020008	245
482202	1200717	17020008	250
482155	1200654	17020008	1300
482053	1200621	17020008	--
482544	1200112	17020008	62
482350	1200220	--080	
481943	1200329	17020008	68.1
481411	1200643	17020008	--
481355	1200717	17020008	--
480850	1201000	17020008	8.51
481121	1200613	17020008	--
480425	1200010	17020008	0.77
480424	1195943	17020008	1
480439	1195902	17020008	1770
480429	1195720	17020008	1780
480115	1195633	17020008	5.01
480250	1195440	17020008	1810
475652	1195145	17020005	86100
475652	1195145	17020005	86100
475648	1195156	17020005	86100
475532	1195407	17020005	35.6
482413	1203858	17020009	--
481947	1204126	17020009	321
481822	1203911	17020009	--
481145	1203550	17020009	64.8
480638	1202132	17020009	7.85
480336	1201526	17020009	8.45
480114	1201140	17020009	6.3
475830	1200930	17020009	--
475444	1200915	17020009	--
475011	1200337	17020009	924
475005	1200043	17020009	924
475305	1202611	17020010	--
474907	1202519	17020010	203
474325	1202620	17020010	7.15

Site - ID
12452890 12452900 12452990 12453000 12453500 12453600 12453679 12453680 12453690 12453700 12454000 12454290 12454500 12455000 12455500 12455550 12455600 12456000 12456300 12456500 12457000 12457300 12457500 12457800 12457880 12457900 12457950 12457952 12457957 12457959 12457962 12457980 12457982 12457984 12458000 12458020 12458025 12458030 12458040 12458045 12458055 12458065 12458075 12458080 12458090 12458097

Station Name

MAD RIVER AT ARDENVOIR, WA
MAD RIVER NEAR ARDENVOIR, WA
ENTIAT RIVER NR ENTIAT, WASH.
ENTIAT RIVER AT ENTIAT, WASH.
PINE CANYON CR NR WATERVILLE WASH
COLUMBIA R TRIB NR ENTIAT, WASH
ROCKY REACH HD UNIT 10W NR WENATCHEE, WA
ROCKY REACH HD UNIT 10 NEAR WENATCHEE, WA ROCKY REACH DAM TW UNIT 10 NR WENATCHEE, WA. COLUMBIA RIVER AT ROCKY REACH DAM, WA WHITE RIVER NEAR PLAIN, WASH.
LITTLE WENATCHEE R TRIB NR TELMA, WASH.
WENATCHEE LAKE NEAR PLAIN, WASH.
WENATCHEE RIVER BELOW WENATCHEE LAKE, WASH
NASON CREEK NEAR NASON, WA
NASON CR NR PLAIN WASH
FISH LAKE NR PLAIN
PHELPS CR NR PLAIN, WASH
BRUSH CR NR TELMA, WASH
CHIWAWA RIVER NEAR PLAIN, WASH.
WENATCHEE RIVER AT PLAIN, WASH.
SKINNEY CR AT WINTON, WASH.
CHIWAUKUM CREEK NEAR CHIWAUKUM, WA
WENATCHEE R NR LEAVENWORTH
WENATCHEE R ABV ICICLE CR AT LEAVENWORTH, WASH CHATTER CR NR LEAVENWORTH, WASH.
EIGHT MILE LAKE NEAR LEAVENWORTH, WASH LITTLE EIGHT MILE LAKE NEAR LEAVENWORTH, WASH HORSESHOE LAKE NEAR LEAVENWORTH, WASH LAKE STUART NEAR LEAVENWORTH, WASH COLCHUCK LAKE NEAR LEAVENWORTH, WASH SHIELD LAKE NEAR LEAVENWORTH, WASH EARLE LAKE NEAR LEAVENWORTH, WASH MESA LAKE NEAR LEAVENWORTH, WASH ICICLE CREEK ABV SNOW CR NR LEAVENWORTH, WASH. ENCHANTMENT LAKE NO. 9 NEAR LEAVENWORTH, WASH ENCHANTMENT LAKE NO. 8 NEAR LEAVENWORTH, WASH ISOLATION LAKE NEAR LEAVENWORTH, WASH ENCHANTMENT LAKE NO. 7 NEAR LEAVENWORTH, WASH ENCHANTMENT LAKE NO. 6 NEAR LEAVENWORTH, WASH INSPIRATION LAKE NEAR LEAVENWORTH, WASH PERFECTION LAKE NEAR LEAVENWORTH, WASH ENCHANTMENT LAKE NO. 3 NEAR LEAVENWORTH, WASH ENCHANTMENT LAKE NO. 2 NEAR LEAVENWORTH, WASH TEMPLE LAKE NEAR LEAVENWORTH, WASH UPPER SNOW LAKE NEAR LEAVENWORTH, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
474413	1202203	17020010
474410	1202148	17020011
473948	1201458	17020010
473940	1201330	17020010
474010	1200640	17020010
473320	1201640	17020010
473200	1201800	17020010
473200	1201800	17020010
473200	1201800	17020010
473128	1201804	17020010
475227	1205209	17020011
475025	1205550	17020011
474950	1204630	17020011
474950	1204630	17020011
474610	1204810	17020011
474827	1204248	--
474942	1204235	17020011
480425	1205055	17020011
475320	1204315	17020011
475015	1203940	17020011
474547	1203954	17020011
474323	1204406	17020011
474050	1204350	17020011
474025	1203400	17020010
473438	1204026	17020011
473630	1205305	17020011
473115	1205128	17020011
473124	1205058	17020011
472940	1205414	17020011
472944	1205217	17020011
472941	1205005	17020011
472953	1204640	17020011
473025	1204604	17020011
473031	1204549	17020011
473228	1204308	17020011
472850	1204902	17020011
472843	1204854	17020011
472839	1204855	17020011
472837	1204842	17020011
472841	1204841	17020011
472852	1204755	17020011
472844	1204738	17020011
472849	1204659	17020011
472855	1204648	17020011
472904	1204634	17020011
472901	1204459	17020011

Drainage Area (Miles2)	$\frac{1}{2}$
--	-
92.4	$\stackrel{1}{6}$
419	
419	
11.1	
0.77	
--	
--	
87800	
87800	
150	
1.02	
273	
273	
88.7	
108	
--	
16.4	
3.34	
170	
591	
2.55	
49.6	
672	
--	
2.25	
--	
--	
--	
--	
--	
--	
--	
193	
--	
--	
--	
--	
--	
--	
--	
--	$\frac{1}{0}$
--	¢
--	

Site - ID 12458100 12458120 12458500 12458900 12459000 12459400 12459500 12459800 12460000 12460500 12461000 12461001 12461100 12461200 12461400 12461500 12462000 12462500 2462520 12462545 12462550 12462560 12462566 12462600 12462610 12462630 12462640 12462700 12462800 12463000 12463500 12463600 12463690 12463695 12463700 12463800 12464000 12464500 12464600 12464606 12464607 12464610 12464614 12464650 12464669 12464670

Station Name

LOWER SNOW LAKE NEAR LEAVENWORTH, WASH NADA LAKE NEAR LEAVENWORTH, WASH
ICICLE CR NR LEAVENWORTH WASH POSEY CANYON NR LEAVENWORTH, WASH WENATCHEE RIVER AT PESHASTIN, WASH
TRONSEN CR NR PESHASTIN, WASH PESHASTIN CREEK AT BLEWETT, WA CRYSTAL LAKE NEAR LEAVENWORTH, WASH PESHASTIN CREEK AT ALLENS RANCH NR PESHASTIN, WA WENATCHEE VALLEY CANAL AT DRYDEN WASH WENATCHEE RIVER AT DRYDEN, WASH.
WENATCHEE R NR DRYDEN, WASH
EAST BRANCH MISSION C NR CASHMERE, WASH
EAST BRANCH MISSION CR TRIB, NR CASHMERE, WASH. MISSION CREEK ABOVE SAND CR NEAR CASHMERE, WASH. SAND CREEK NEAR CASHMERE, WASH.
MISSION CR AT CASHMERE, WASH.
WENATCHEE RIVER AT MONITOR, WASH.
WENATCHEE RIVER AT WENATCHEE, WASH
ROCK ISLAND CREEK NEAR ROCK ISLAND, WA
ROCK ISLAND DAM POWER PLANT NORTH HEADWATER
ROCK ISLAND PP TW (UNIT 1) NR WENATCHEE, WASH. ROCK ISLAND PP TW (UNIT 10) NR WENATCHEE, WASH COLUMBIA RIVER BELOW ROCK ISLAND DAM, WA
DRY GULCH NR MALAGA, WASH
COLOCKUM CR TRIBUTARY NR MALAGA, WASH
COLOCKUM CREEK NEAR ROCK ISLAND, WA
MOSES CR AT WATERVILLE, WASH.
MOSES CREEK AT DOUGLAS, WASH.
DOUGLAS CREEK NEAR ALSTOWN, WASH.
DOUGLAS CR NR PALISADES, WASH
RATTLESNAKE CR TRIB NR SOAP LAKE, WASH.
GRIMES LAKE NR MANSFIELD, WASH.
JAMESON LAKE NR MANSFIELD, WASH.
MCCARTENEY CREEK TRIBUTARY NEAR FARMER, WASH.
PINE CANYON TRIBUTARY NEAR FARMER, WASH
DOUGLAS CR AT PALISADES, WASH.
COLUMBIA RIVER AT TRINIDAD, WASH
SCHNEBLY COULEE TRIBUTARY NEAR VANTAGE, WASH SAND HOLLOW CR AT S RD SW NR VANTAGE, WA SAND HOLLOW AT MOUTH NR VANTAGE, WA WANAPUM POWERPLANT HEADWATER NR BEVERLY WA WANAPUM POWERPLANT TAILWATER NEAR BEVERLY, WA CRAB CREEK TRIBUTARY NEAR WAUKON, WA WEST MEDICAL LAKE NR MEDICAL LAKE, WASH. CLEAR LAKE NEAR MEDICAL LAKE, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
472923	1204402	17020011	--
472950	1204401	17020011	--
473330	1204000	17020011	211
473601	1203722	17020011	1.36
473500	1203646	17020011	1000
472018	1203358	17020011	3.44
472509	1203929	17020011	40
472826	1204758	17020011	--
472829	1203919	17020011	101
473240	1203320	--	--
473240	1203340	17020011	1160
473207	1203259	17020011	--
472250	1202910	17020011	15.4
472250	1202920	17020010	2.49
472548	1203020	17020011	39.8
472548	1203025	17020011	18.6
473100	1202830	17020011	81.2
472958	1202524	17020011	1300
472732	1202007	17020011	--
472122	1200607	17020010	--
464955	1194855	17020015	89400
472100	1200600	17020010	89400
472100	1200600	--10	--
471957	1200448	17020010	89400
471838	1200547	17020010	12
471554	1201056	17020010	0.49
471736	1200913	17020010	--
473850	1200310	17020012	3.48
473649	1200010	17020012	15.4
473500	1200050	17020012	99.9
472800	1195230	17020012	206
472630	1193545	17020012	2.22
474318	1193559	17020012	--
474013	1193748	17020012	--
473748	1194438	17020012	0.4
473851	1194850	17020012	1.1
472500	1195600	17020012	844
471330	1200050	17020010	90500
465744	1200847	17020010	0.82
465550	1195355	17020010	47
465546	1195701	17020010	--
465238	1195813	17020010	--
465600	1195800	--0	--
473212	1175112	17020013	0.68
473417	1174215	17020013	1.84
473230	1174121	17020013	9.51

Site - ID 12464770 12464774 12464780 12464800 12464809 12464810 12464900 12464910 12464950 12465000 12465100 12465300 12465400 12465500 12466000 12466090 12466100 12466101 12466500 2467000 12467400 12467500 12468000 12468500 12469000 12469500 12470000 12470300 12470500 12470600 2470800 12470900 12471000 12471005 12471008 12471050 12471080 12471090 12471100 12471200 12471270 12471300 12471400 12471440 12471482 12471485

Station Name
CRAB CREEK AT ROCKY FORD ROAD NEAR RITZVILLE, WA SOUTH FORK CRAB CREEK NEAR MOUTH NR RITZVILLE, WA CRAB CR ABOVE SYLVAN LAKE NR LAMONA, WASH.
COAL CREEK AT MOHLER, WASH
SYLVAN LAKE NR LAMONA WASH
CRAB CREEK BLW SYLVAN LAKE NR ODESSA, WASH
COFFEE POT LAKE NR ODESSA,WASH
DEER LAKE NR ODESSA,WASH
PACIFIC LAKE NR ODESSA, WASH
CRAB CREEK AT IRBY, WASH.
CONNAWAI CREEK TRIBUTARY NEAR GOVAN, WASH
BROADAX DRAW TRIBUTARY NEAR WILBUR, WASH
WILSON CREEK BLW CORBETT DRAW NEAR ALMIRA, WASH. WILSON CREEK AT WILSON CREEK, WASH.
CRAB CR AT WILSON CREEK P.O. NR WILSON CREEK, WA BILLY CLAPP LK NR PINTO RIDGE DAM NR STRATFORD, WA WEST CANAL NR ROYAL CITY, WASH.
INFLOW TO DW272A1 BASIN,BL86 COLUMBIA BASIN,WASH CRAB CREEK AT ADRAIN, WA
CRAB CREEK NEAR MOSES LAKE, WASH
HAYNES CANYON NEAR COULEE CITY, WASH
PARK CREEK NEAR COULEE CITY, WASH.
PARK LAKE NR COULEE CITY, WASH
PARK CREEK BLW PARK LAKE NR COULEE CITY, WASH
BLUE LAKE NR COULEE CITY WASH
LENORE LK NR SOAP LK, WASH
SOAP LK NR SOAP LK, WASH
IRON SPRINGS CREEK NEAR WINCHESTER, WASH
ROCKY FORD CREEK NEAR EPHRATA, WASH.
ROCKY FORD CR AT SR 17 NR EPHRATA, WA
MOSES LAKE AT CITY PARK NR MOSES LAKE, WA MOSES LK IN PARKER HORN AT ALDER ST AT MOSES LK, W MOSES LK AT MOSES LK, WASH.
POTHOLES RES IN CRAB CR ARM NR MOSES LAKE, WA POTHOLES RES. IN WEST ARM NR MOSES LAKE, WA WINCHESTER WSTWY AT GAGE ON SE C RD NR MOSES LK, W FRENCHMAN HILLS WSTWY AT SCBSWRA NR MOSES LAKE, WA FRENCHMAN HILLS WSTWY ON SE C RD NR MOSES LK, WA PAHA COULEE TRIBUTARY NEAR RITZVILLE, WASH. LIND COULEE TRIBUTARY NEAR LIND, WASH. FARRIER COULEE NEAR SCHRAG, WASH. WEBER COULEE TRIBUTARY NEAR RUFF, WASH. LIND COULEE WASTEWAY AT SR17 NR WARDEN, WA WARDEN LAKE NR WARDEN, WASH
O SULLIVAN DAM NR WARDEN, WA
POTHOLES CANAL AT ROAD K. 2 NEAR WARDEN, WA

Latitude (Degrees)	Longitude (Degrees) 471810	Hydrologic Unit (OWDC
471804	1182205	17020013
471832	1182954	17020013
472423	1181854	17020013
471933	1183444	17020013
471918	1183625	17020013
472847	1183607	17020013
472803	1183724	--
472448	1184417	17020013
472138	1185056	17020013
473658	1184540	17020013
475024	1184540	17020013
473947	1185546	17020013
472550	1190610	17020013
472524	1190747	17020013
472704	1191457	17020014
465606	1193349	17020015
465605	1193348	17020015
472320	1192230	17020015
471122	1191553	17020015
473846	1192122	17020014
473520	1192300	17020014
473441	1192505	17020014
473422	1192532	17020014
473421	1192530	17020014
473052	1193006	17020014
472411	1192911	17020014
472000	1194212	17020015
471846	1192640	17020015
471542	1192716	17020015
471105	1192100	17020015
470803	1191640	17020015
470611	1191902	17020015
470306	1192057	17020015
470325	1192443	17020015
465943	1192527	17020015
470122	1194401	17020015
465828	1192542	17020015
470303	1182526	17020015
475722	1183555	17020001
470745	1185115	17020015
470825	1185220	17020015
470037	1190810	17020015
465746	1191025	17020015
465859	1191529	17020015
465843	1191526	17020015

Drainage
Area
(Miles2)
384
--
542
64.7
675
--
--
--
--
1040
0.25
1.12
327
427
1760
--
--
--
1950
2230
2.7
400
317
317
334
367
413
1.57
458
--
--
--93
3080
--
--
-21
-52
--

Site - ID 12471495 12471500 12471505 12471506 12471510 12471600 12471610 2471710 12471720 12471722 12471724 12472000 12472190 12472200 12472300 12472350 12472380 12472400 12472500 12472515 12472520 12472600 12472700 12472750 12472800 12472900 12472950 12473100 12473190 12473200 12473502 12473506 12473507 12473508 12473510 12473512 12473518 12473519 1247351920 1247351940 1247351960 1247351980 12473520 12473560 12473700 12473710

Station Name

CRAB CR AT UPPER COLUMBIA NW REFUGE NR OTHELLA, WA CRAB CREEK NEAR WARDEN, WASH.
UPPER GOOSE LAKE NR OTHELLO,WASH LOWER GOOSE LK AT E. END OF KULM RD NR OTHELLO, WA SODA LAKE NR OTHELLO,WASH HEART LAKE NR OTHELLO, WASH CANAL LAKE NR OTHELLO WASH SCBID WAHLUKE BRANCH CANAL BLW SIPHON NR OTHELLO SCBID PRIEST RAPIDS WASTEWAY NR MOUTH NR MATTAWA SCBID WB48E WASTEWAY NR MOUTH NR MATTAWA, WA SCBID MATTAWA WASTEWAY NR MATTAWA, WA CRAB CREEK AT MORGAN LAKE ROAD NEAR OTHELLO, WA LOWER CRAB CR AT MCMANANON RD NR OTHELLO, WA CRAB CR NR OTHELLO,WASH
DW 272 A1 DRAIN NEAR ROYAL CAMP, WASH.
DW 272 A DRAIN NEAR ROYAL CAMP, WASH
CRAB CR LATERAL AB ROYAL LAKE NR OTHELLO, WA CRAB CREEK AT B SE ROAD NEAR ROYAL CITY, WA CRAB CREEK NEAR SMYRNA, WASH
RED ROCK COULEE AT E ROAD SW NEAR SMYRNA, WA RED ROCK COULEE NEAR SMYRNA, WA CRAB CR NR BEVERLY, WASH.
PRIEST RAPIDS POWERPLANT HEADWATER NR BEVERLY WA PRIEST RAPIDS POWERPLANT T W NR BEVERLY, WASH. COLUMBIA RIVER BELOW PRIEST RAPIDS DAM, WASH. COLUMBIA R AT VERNITA BR NR PRIEST RAPIDS DAM,WA SCBID SADDLE MOUNTAIN WASTEWAY NR MATTAWA, WA WAHLUKE BRANCH 10A WSTWY NR OTHELLO, WA WAHLUKE BRANCH 10 WASTEWAY NEAR WHITE BLUFFS, WA WAHLUKE BRANCH 10 WSTWY NR MOUTH NR WHITE BLUFFS SCBID WB 5 WASTEWAY AT DROP 14 NR RINGOLD, WA SCBID PE 16.4 WASTEWAY BLW EAGLE LK NR BASIN CITY SCBID PE16.4 WASTEWAY AT RICKERT RD NR RINGOLD, WA SCBID PE 16.4 WASTEWAY NR MOUTH NR HANFORD, WA COLUMBIA RIVER AT RINGOLD, WA
BAXTER CANYON SPRINGS NR RICHLAND, WA COLUMBIA R E CHANNEL AT JOHNSON IS NR RICHLAND, WA COLUMBIA R W CHANNEL AT JOHNSON IS NR RICHLAND, WA COLUMBIA R BLW JOHNSON IS. NO. 1 NR RICHLAND, WA COLUMBIA R BLW JOHNSON IS. NO. 2 NR RICHLAND, WA COLUMBIA R BLW JOHNSON IS. NO. 3 NR RICHLAND, WA COLUMBIA R BLW JOHNSON IS. NO. 4 NR RICHLAND, WA COLUMBIA RIVER AT RICHLAND WASH FCID WASTEWAY AT PASCO, WA KANSAS NO. 2 NEAR CUNNINGHAM, WASH. KANSAS NO. 2 TRIB NR CUNNINGHAM, WASH.

Latitude	Longitude (Degrees)	Hydrologic (Degrees)
465725	1191527	17020015
465700	1191520	17020015
465555	1191720	17020015
465525	1191714	17020015
465727	1191344	17020015
465544	1191116	17020015
465512	1191123	17020015
464221	1190834	--
464442	1195638	17020016
464232	1195604	17020016
463917	1194748	--
465510	1191416	17020015
465345	1191810	17020015
464908	1192154	17020015
465448	1193232	17020015
465454	1193230	17020015
465237	1192051	17020015
464920	1192710	17020015
465035	1193625	17020015
465228	1193551	17020015
465120	1193548	17020015
464948	1194948	17020015
463846	1195424	17020016
463842	1195432	17020016
463744	1195149	17020016
463824	1194354	17020016
464209	1193937	--
463834	1191958	17020016
464034	1192445	17020016
464036	1192638	17020016
463224	1191631	--
464024	1190856	--
463121	1191418	17020016
463022	1191532	--
462916	1191515	17020016
462635	1191513	--
462319	1191552	17020016
462321	1191613	17020016
462246	1191620	17020016
462235	1191617	17020016
462228	1191616	17020016
462204	1191608	17020016
461846	1191528	--
461529	1190830	17020016
464926	1185532	17020016
464926	1185635	

Drainage
Area
(Miles2)
--
4470
--
--
--
--
--
--
--
18.1
9.83
--
4700
0.88
3.36
56
86.2
4500
--
--
4840
--
96000
96000
96000
37.1
--
--
3.31
969690
96900
--
--
--
--
118
--

Site - ID
12473740 12473760 12473820 12473860 12473880 12473900 12473980 12474000 12474500 12474510 12474700 12475000 12475300 12475400 12475420 12475500 12476000 12476500 12476599 2476650 12477000 12477001 12477600 12478000 12478100 12478200 12478300 12478500 12479000 12479100 12479280 12479300 12479500 12479501 12479600 12479720 12479750 12480000 12480500 12480600 12480700 12481000 12481090 12481100 12481500 12481600

Station Name

EL 68 D WASTEWAY NEAR OTHELLO, WASH SCBID POTHOLES E CANAL BLW SCOOTENEY RES NR MESA SCBID ELTOPIA BRANCH CANAL ABV FALLS NR PASCO, WA SCBID WASTEWATER DITCH NO. 1 NR RICHLAND, WA SCBID PPL 4.3 WASTEWAY NR RICHLAND, WA SCBID PASCO WASTEWAY NR RICHLAND, WA GOLD CR ABOVE KEECHELUS LAKE NR HYAK,WA KEECHELUS LAKE NEAR MARTIN, WA
YAKIMA RIVER NEAR MARTIN, WASH
YAKIMA R 2 MI BELOW KEECHELUS LAKE AT MARTIN,WA MOSQUITO CR NR EASTON, WASH.
CABIN CREEK NEAR EASTON, WASH
BOX CANYON CR TRIBUTARY NR EASTON, WASH
LODGE CR ABOVE KACHESS LAKE NR EASTON,WA
TRIBUTARY TO LAKE KACHEES NR EASTON,WA
KACHESS LAKE NEAR EASTON, WA
KACHESS RIVER NEAR EASTON, WASH
KITTITAS CANAL AT EASTON, WA
KITTITAS MAIN CANAL AT DIVERSION AT EASTON,WA
HIGHLINE CANAL NR ELLENSBURG,WA
YAKIMA RIVER AT EASTON, WASH.
YAKIMA @ EASTON UNREGULATED FROM MODEL
YAKIMA RIVER ABV CLE ELUM RIVER NR CLE ELUM,WASH CLE ELUM R ABV WAPTUS R NR ROSYLN, WA WAPTUS RIVER AT MOUTH NR ROSLYN, WA
COOPER RIVER AT SALMON LASAC NR ROSLYN, WA CLE ELUM R ABOVE CLE ELUM LAKE NR ROSLYN, WA CLE ELUM LAKE NEAR ROSLYN, WA
CLE ELUM RIVER NEAR ROSYLN, WASH
DOMERIE CREEK NEAR ROSLYN, WASH CLE ELUM R NR CLE ELUM,WA
CLE ELUM RIVER NR CLE ELUM, WASH.
YAKIMA RIVER AT CLE ELUM, WASH. YAKIMA @ CLE ELUM UNREGULATED FROM MODEL THORNTON CR NR CLE ELUM, WASH JUNGLE CREEK NR MOUTH NR CLE ELUM, WA
NO FK TEANAWAY R BLW BRIDGE AT DICKEY CR CAMPGRND TEANAWAY RIVER BELOW FORKS NEAR CLE ELUM, WASH.
TEANAWAY RIVER NEAR CLE ELUM, WASH.
TEANAWAY R NR CLE ELUM, WASH
HOVEY CREEK NEAR CLE ELUM, WASH
SWAUK CREEK NEAR CLE ELUM, WA SWAUK CREEK NEAR THORP, WA SWAUK CREEK AT HIGHWAY 10 NEAR THORP, WA CASCADE CANAL NEAR ELLENSBURG WASH WEST SIDE DITCH AT UMTANUM RD NR ELLENSBURG, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
464347	1190256	17020016	146
464005	1190151	--	--
462027	1185816	--	--
462058	1191450	--	--
461919	1191408	--	--
462240	1191518	--	--
472325	1212254	--	--
471920	1212020	17030001	55.8
471917	1212006	17030001	54.7
471831	1211848	--	--
471732	1211923	17030001	1.07
471430	1211340	17030001	31.7
472257	1211542	17030001	0.36
471958	1211521	--	--
471842	1211455	--	--
471550	1211200	17030001	63.6
471541	1211208	17030001	63.6
471400	1211100	17030001	--
471426	1211109	--	--
470628	1203334	--	--
471420	1211040	17030001	188
463331	1202811	--	22
471110	1210231	17030001	248
472746	1210249	17030001	--
472513	1210515	17030001	--
472429	1210611	17030001	--
472119	1210622	--	--
471440	1210400	17030001	203
471441	1210400	17030001	203
471447	1210622	17030001	3.19
471128	1210057	--	--
471105	1210010	17030001	221
471135	1205655	17030001	502
463332	1202812	--	22
470922	1205134	17030001	0.66
472030	1205159	17030001	--
471721	1205130	17030001	--
471448	1205136	17030001	172
471140	1204650	17030001	200
471030	1204505	17030001	--
471905	1204132	17020010	2.65
470950	1204404	17030001	87.8
470745	1204435	17030001	--
470728	1204408	17030001	--
470635	1204302	--	--
465659	1203408	17030001	--

Site - ID 12481900 12482000 12482100 12482600 12482700 12482720 12482780 12482800 12483190 12483200 12483300 12483500 12483520 12483535 12483540 12483575 12483585 12483590 2483600 12483750 12483800 12483900 12483940 12483995 12484000 12484100 12484200 12484225 12484250 2484300 12484440 12484460 12484480 12484490 12484500 12484501 12484550 12484560 284600 12484650 12484700 12484800 12484900 12484950 12485000 12485002

Station Name

TANEUM CR AT TANEUM MEADOW NR THORP, WA
TANEUM CREEK NEAR THORP, WASH
TANEUM CREEK AT BRUTON RD. AT THORPE, WA
YAKIMA RIVER NR THORP, WASH.
TOWN CANAL AT ELLENSBURG WA
CASCADE CANAL AT ELLENSBURG,WA
YAKIMA RIVER AT EVERGREEN FARM NR ELLENSBURG, WA
YAKIMA R AT THORP HIGHWAY BR. AT ELLENSBURG, WA SOUTH FORK MANASTASH CR NR ELLENSBURG, WA SO FK MANASTASH CR AB LAZY F CAMP NR ELLENSBURG,WA SOUTH FK MANASTASH CR TRIB NR ELLENSBURG, WASH. MANASTASH CREEK NEAR ELLENSBURG, WASH MANASHTASH CR AT BROWN RD NR ELLENSBURG,WA CURRIER CR AT DRY CR RD AT ELLENSBURG, WA REECER CR AT FAUST RD AT ELLENSBURG,WA UNNAMED DRAIN 1.9 MI. NW THRALL, WA
YAKIMA RIVER NEAR THRALL, WA
YAKIMA R ABOVE WILSON CR AT RM 148 AT THRALL,WA WILSON CREEK NEAR ELLENSBURG, WASH. NANEUM CR BLW HIGH CR NR ELLENSBURG, WA NANEUM CREEK NEAR ELLENSBURG, WASH. WILSON CREEK AT ELLENSBURG, WA
NANEUM CREEK ABOVE GAME FARM ROAD NR KITTITAS, WA COLEMAN CREEK BELOW TOWN CANAL NEAR KITTITAS, WA COLEMAN CR AT WILSON CR RD AT THRALL,WA WILSON CREEK ABOVE CHERRY CREEK AT THRALL, WA JOHNSON CANYON TRIBUTARY NEAR KITTITAS, WASH PARK CR AT CLEMENS RD AT KITTITAS, WA TILE DRAIN TO CARIBOU CR NR KITTITAS, WA COOKE CREEK NEAR ELLENSBURG, WASH CHERRY CREEK AB WHIPPLE WASTEWAY AT THRALL, WA BADGER CR AT BADGER PKT RD \& PARALLEL RD CHERRY CREEK AT THRALL, WASH. WILSON CREEK AT THRALL, WASH. YAKIMA RIVER AT UMTANUM, WASH.
YAKIMA @ UMTANUM UNREGULATED FROM MODEL
UMTANUM CREEK NR MOUTH AT UMTANUM, WA
YAKIMA RIVER BELOW UMTANUM CR AT UMTANUM, WA MCPHERSON CANYON AT WYMER, WASH
SQUAW CREEK AT HIGHWAY 821 NEAR WYMER, WA
YAKIMA R BELOW SQUAW CR AT RM 134 AT ROZA,WA BURBANK CR AT MOUTH NR WYMER, WA
YAKIMA RIVER AT ROZA DAM, WASH
YAKIMA R ABV CANAL DIVERSION AT RM 128 AT ROZA DAM ROZA CANAL AT ROZA DAM NEAR POMONA,WA ROZA CANAL AT POWERHOUSE AT YAKIMA,WA

Latitude (Degrees)	Longitude (Degrees) 170647	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
470510	1204640	17030001	--
470457	1204357	17030001	74.3
470605	1204204	--	--
470009	1203142	--	--
470103	1203100	--	--
470107	1203628	17030001	--
470020	1203543	--	--
465818	1204832	17030001	--
465735	1204702	17030001	--
465740	1204541	17030001	--12
465800	1204140	17030001	74.5
465944	1203523	--	--
470121	1203451	17030001	--
470003	1203428	--	--
465645	1203226	17030001	--
465551.1	1203103.6	17030001	--
465452	1203031	--	--
470735	1202935	17030001	13.6
471055	1202644	17030001	--
470737	1202847	17030001	69.5
465806	1203213	--	--
470059	1202830	17030001	--
465835	1202814	17030001	--
465654	1202948	--	--
465535	1203001	17030001	180
465841	1201424	17030001	0.65
465742	1202444	17030001	--
470235	1202206	--	--
470540	1202240	17030001	18.6
465556	1202928	17030001	166
465444	1202206	17030001	--
465534	1202951	17030001	214
465504	1203025	17030001	382
465146	1202844	17030001	1590
463333	1202813	--	--
465127	1202946	17030001	53
465118	1202859	17030001	--
465003	1202712	17030001	5.48
464908	1202713	--	--
464807	1202710	17030001	--
464650303	1202653	1202710	17030001

Site - ID
12485003 12485005 12485010 12485012 12485014 12485016 12485018 12485019 12485020 12485100 12485299 12485500 12485550 12485700 12485740 12485750 12485790 12485890 12485900 12485940 12485960 12486000 12486500 12487000 12487050 12487200 12487400 12487500 12488000 12488050 12488100 12488250 12488300 12488500 12489000 12489050 12489100 12489150 12489200 12489300 12489500 12489600 12490000 12490010 12490500 12491000

Station Name
ROZA CANAL AT N 33RD ST. BLW POWERHOUSE ROZA CANAL AT BEAM ROAD NEAR ZILLAH,WASH ROZA CANAL AT SCOON RD NR SUNNYSIDE WASH ROZA CANAL BLW SULPHUR CR WSTWY NR SUNNYSIDE, WA ROZA CANAL AT BLK CANYON CR NR SUNNYSIDE WASH ROZA CANAL AT FACTORY RD NR SUNNYSIDE WASH ROZA CANAL AT WILGUS RD NR GRANDVIEW WASH ROZA CANAL AT GAP RD NR PROSSER, WA ROZA CANAL AT ROTHROCK RD NR PROSSER,WA YAKIMA R BELOW ROZA DAM NR POMONA,WA ROZA CANAL AT N 33RD ST. DOWNSTRM OF PWRHOUSE SELAH-MOXEE CANAL NR SELAH WASH YAKIMA RIVER AB SELAH CR AT POMONA, WA SELAH CREEK TRIBUTARY NEAR YAKIMA, WASH. SELAH CR AT MOUTH AT POMONA, WA YAKIMA R ABOVE WENAS CR AT RM 122.5 AT POMONA,WA YAKIMA R AT HARRISON RD BRIDGE NR POMONA, WA WENAS CREEK ABV WENAS LAKE NEAR SELAH, WA PINE CANYON NEAR NACHES, WASH
WENAS CREEK AT FLETCHER LANE NEAR SELAH, WA WENAS CREEK AT WENAS ROAD CROSSING NR SELAH,WASH WENAS CREEK NEAR SELAH, WASH
TAYLOR CANAL NR SELAH WASH
YAKIMA R AT SELAH GAP NR N YAKIMA WASH
N.F. LITTLE NACHES R ABV MID. FK. NR CLIFFDELL, WA LITTLE NACHES RIVER AT MOUTH NR CLIFFDELL, WA DEEP CR NR GOOSE PRAIRIE, WASH.
LITTLE NACHES R. UNPUBLISHED BUR'S, ?????
BUMPING RIVER NEAR NILE, WASH.
BUMPING R AT SODA SPRINGS WALKWAY NR NILE,WA BUMPING RIVER AT AMERICAN RIVER WASH AMERICAN RIVER AT HELLS CROSSING NR NILE, WA AMERICAN RIVER TRIBUTARY NEAR NILE, WASH. AMERICAN RIVER NEAR NILE, WASH.
NACHES R AT ANDERSON RANCH NR NILE WASH NACHES R AT COTTONWOOD CAMPGRND NR CLIFFDELL, WA RATTLESNAKE CR ABV N.F. RATTLESNAKE CR NR NILE, WA RATTLESNAKE CR ABV LITTLE RATTLESNAKE NR NILE, WA RATTLESNAKE CREEK (UNPUBLISHED BUR'S RECORDS) RATTLESNAKE CR AT MOUTH NR NILE, WA NACHES R AT OAK FLAT NEAR NILE, WASH. CITY OF YAKIMA (OAK FLAT) DIVERSION NR NACHES, WA SELAH VALLEY CANAL NEAR NACHES, WA NACHES R NR NACHES, WASH
N.F. TIETON RIVER ABV CLEAR LAKE NR RIMROCK, WA RIMROCK LAKE AT TIETON DAM, NR NACHES, WA
$\left.\begin{array}{cccc}\begin{array}{c}\text { Latitude } \\ \text { (Degrees) }\end{array} & \begin{array}{c}\text { Longitude } \\ \text { (Degrees) } \\ 1202715\end{array} & \begin{array}{c}\text { Hydrologic } \\ \text { Unit (OWDC) } \\ 463700\end{array} & \begin{array}{c}\text { Drainage } \\ \text { Area }\end{array} \\ 462458 \\ \text { (Miles2) }\end{array}\right\}$

Site - ID 12491500 12491700 12492000 12492500 12493000 12493100 12493500 12494000 12494400 12496510 12496511 12496550 12498700 12498980 12499000 12500005 12500010 12500400 2500410 12500415 12500420 12500430 12500437 12500439 12500440 12500442 12500445 12500450 12500500 2500600 12500900 12501000 12501500 12501600 12501990 12502000 12502490 12502500 12503000 2503001 12503002 12503300 12503301 12503500 12503599 12503640

Station Name

TIETON RIVER AT TIETON DAM NEAR NACHES, WASH. HAUSE CREEK NEAR RIMROCK, WASH. TIETON CANAL NEAR NACHES, WA TIETON RIVER AT CANAL HEADWORKS NR NACHES, WASH TIETON R AT OAK C GAME RANGE, WASH
TIETON RIVER AT MOUTH NR NACHES, WA WAPATOX CANAL NEAR NACHES, WA
NACHES RIVER BELOW TIETON RIVER NR NACHES, WASH NACHES RIVER AT NACHES, WASH.
PACIFIC POWER \& LIGHT COMPANY WASTEWAY CITY OF YAKIMA FINISH WATER
BUCKSKIN SLOUGH BLW GLEED DITCH NR GLEED, WA NACHES RIVER NR YAKIMA, WASH.
COWICHE CREEK WEIKEL, WA
NACHES RIVER NR NORTH YAKIMA, WA
YAKIMA R ABOVE ROZA POWER RETURN NR YAKIMA,WA YAKIMA R NR TERRACE HEIGHTS
FIREWATER CANYON NR MOXEE CITY, WASH.
UNNAMED DRAIN AT WALTERS RD AT MOXEE CITY, WA TRIB. TO MOXEE DRAIN AT BELL RD NR UNION GAP, WA MOXEE DRAIN AT BIRCHFIELD ROAD NEAR UNION GAP, WA MOXEE DRAIN AT THORP RD NR UNION GAP,WA WIDE HOLLOW CR AT W. VALLEY M.S. NR AHTANUM, WA WIDE HOLLOW CR AT GOODMAN RD AT UNION GAP WIDE HOLLOW CR AT UNION GAP
WIDE HOLLOW CR AT OLD STP AT UNION GAP, WA WIDE HOLLOW CREEK NEAR MOUTH AT UNION GAP,WASH YAKIMA R ABV AHTANUM CR AT UNION GAP, WASH. NORTH FORK AHTANUM CREEK NEAR TAMPICO, WASH. N.F. AHTANUM CR AT TAMPICO
S.F. AHTANUM CR ABV CONRAD RNCH NR TAMPICO, WA SO FK AHTANUM CR AT CONRAD RNCH N TAMPICO, WASH SOUTH FORK AHTANUM CR NR TAMPICO, WASH. S.F. AHTANUM CR AT TAMPICO AHTANUM CR NR TAMPICO,WA
AHTANUM CR AT THE NARROWS NR TAMPICO, WASH
AHTANUM CR AT GOODMAN RD AT UNION GAP
AHTANUM CREEK AT UNION GAP, WASH
YAKIMA RIVER AT UNION GAP, NR YAKIMA, WASH
YAKIMA RIVER AT UNION GAP, WASH.(RECONSTRUCTED)
YAKIMA RIV AT UNION GAP(RECON.W/CANALS+PARKER)
YAKIMA R. @ UNION GAP (UNREGULATED FROM MODEL)
YAKIMA R. @ UNION GAP (UNREGULATED NUMB 2 MODEL)
MAIN CANAL NR PARKER, WASH
WAPATO MAIN CANAL NR PARKER, WA
UNNAMED DRAIN AT LATERAL \& RIGGS RDS NR WAPATO, WA

Latitude (Degrees)	Longitude (Degrees) 463946	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
464033	1210725	17030002	187
464010	1210030	17030002	3.91
464016	1210010	17030003	--
464330	1204820	17030002	239
464439	1204706	17030002	296
464450	1204620	17030002	--
464444	1204605	17030002	--
464328	1204156	17030001	941
464144	1203911	17030002	953
464110	1203910	17030002	--
463801	1203450	17030002	--
463755	1203510	17030002	--
463740	1203928	17030003	-76
463742	1203110	17030001	--
463622	1202846	--	110
463621	1202827	17030003	--
463014	1200837	17030003	3250
463246	1202118	17030003	7.3
463326	1202632	17030003	--
463246	1202613	17030003	--
463218	1202719	--	--
463456	1203634	17030003	--
463327	1203004	17030003	--
463301	1202848	17030003	--
463235	1202826	17030003	--
463235	1202827	17030003	66.9
463204	1202758	17030003	3480
463340	1205510	17030003	68.9
463155	1205206	17030003	--
462932	1205723	17030003	--
463033	1205436	17030003	24.8
463110	1205320	17030003	28.5
463137	1205220	17030003	--
463130	1204955	--	--
463140	1204800	17030003	119
463255	1203003	17030003	--
463210	1202820	17030003	173
463150	1202810	17030003	3650
463150	1202810	--	3650
463150	1202810	--	3650
463150	1202810	--	3650
463114	1202810	1202842	17030003

Site - ID
12503650 12503900 12503950 12504000 12504490 12504500 12504505 12504508 12504510 12504512 12504514 12504516 12504518 12504520 12505000 12505001 12505002 12505050 12505100 12505300 12505310 12505320 12505350 12505410 12505435 12505440 12505450 12505460 12505465 12505466 12505467 12505468 12505469 12505470 12505472 12505474 12505475 12505480 12505482 12505490 12505495 12505500 12505510 12505900 12506000 12506300

Station Name

WAPATO MAIN CANAL EXTENSION AT MARBLE RD NR BROWNS WAPATO CANAL AT BECKER \& LARUE RDS AT TOPPENISH YAKIMA R AT PARKER
OLD RESERVATION CANAL NR PARKER WASH SUNNYSIDE CANAL AT DIVERSION NR PARKER, WA SUNNYSIDE CANAL NR PARKER WASH
SUNNYSIDE CANAL AT BEAM ROAD NEAR GRANGER,WASH SUNNYSIDE CANAL AB N OUTLOOK RD NR SUNNYSIDE, WA SUNNYSIDE CANAL AT MAPLE GROVE RD NR SUNNYSIDE SUNNYSIDE CANAL BLW SULPHUR CR WSTWY NR SUNNYSDE SUNNYSIDE CANAL AT EDISON RD NR SUNNYSIDE WASH SUNNYSIDE CANAL AT BETHNAY RD NR GRANDVIEW, WASH SUNNYSIDE CANAL AT GRANDVIEW WASH
SUNNYSIDE CANAL AT GAP RD NR PROSSER,WA
YAKIMA RIVER NEAR PARKER, WASH.
YAKIMA R NEAR PARKER (UNREGULATED FROM MODEL) YAKIMA R NEAR PARKER (UNREGULATED NUMB 2, MODEL) YAKIMA RIVER NEAR WAPATO, WA
YAKIMA R AT DONALD RD AT RM 100.3 AT DONALD,WA YAKIMA R NR TOPPENISH
YAKIMA RIVER BELOW HIGHWAY 22 NEAR TOPPENISH, WA YAKIMA R AT RM 91 AT ZILLAH,WA
E TOPPENISH DRAIN AT WILSON RD NR TOPPENISH,WASH SUB 35 DRAIN AT PARTON ROAD NEAR GRANGER,WASH YAKIMA RIVER NEAR GRANGER, WASH.
YAKIMA R AT BRIDGE AVE AT GRANGER,WA
GRANGER DRAIN AT GRANGER, WA
GRANGER DRAIN AT MOUTH NR GRANGER, WA
YAKIMA R AT HWY 223 BRIDGE AB MARION DR AT GRANGER HARRAH DRAIN AT HARRAH DRAIN RD AT HARRAH, WA UNNAMED DRAIN TO MARION DRAIN NR HARRAH, WA UNNAMED DRAIN AT FORT RD NR HARRAH, WA UNNAMED DRAIN AT BECKER \& YOST RDS NR TOPPENISH WANITY SLOUGH AT EAST FIRST ST. AT WAPATO, WA UNNAMED DRAIN AT HOFFER RD NR WAPATO, WA UNNAMED DRAIN AT BRANCH RD AT ASHUE NR WAPATO, WA UNNAMED DRAIN AT YETHONAT AT BRANCH RD NR WAPATO WANITY SLOUGH AT ROCKY FORD RD NR TOPPENISH WANITY SLOUGH AT MEYERS RD
SATUS NO. 2 CANAL AT HAPPY RD NR SATUS,WA SATUS NO. 3 CANAL AT WINNIER RD NR MABTON,WA MARION DRAIN NR GRANGER
MARION DRAIN AT INDIAN CHURCH RD AT GRANGER, WA TOPPENISH CR AB WILLY DICK CNYN NR FORT SIMCOE, WA TOPPENISH CREEK NEAR FORT SIMCOE, WASH. NORTH FORK SIMCOE CREEK NEAR FORT SIMCOE, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
462705	1203738	--	--
462140	1202119	17030003	--
463022	1202707	17030003	--
462940	1202700	--	--
462944	1202558	17030003	--
462940	1202540	--	--
462239	1200959	--	--
462158	1200541	17030003	--
462127	1200222	17030003	--
462048	1195820	17030003	--
461926	1195614	17030003	--
461745	1195529	17030003	--
461532	1195325	17030003	--
461421	1194718	--	--
462950	1202630	17030003	3660
462950	1202630	--	3660
462951	1202630	--	3660
462908.6	1202549.2	17030003	--
462758	1202351	--	--
462435	1201847	17030003	--
462413.6	1201829.7	17030003	--
462407	1201654	--	--
462204	1201500	17030003	--
462011	1201348	17030003	--
462046	1201242	17030003	--
462016	1201148	--	--
462037	1201109	17030003	--
462010	1201138	17030003	--
462000	1201138	17030003	--
462352	1203349	17030003	--
462050	1203042	17030003	--
462232	1202945	17030003	--
462046	1202121	17030003	--
462652	1202358	17030003	--
462626	1202539	17030003	--
462417	1202738	17030003	--
462416	1202404	17030003	--
462019	1201759	17030003	--
462002	1201733	17030003	--
461625	1201316	17030003	--
461139	1200549	17030003	--
461914	1201326	17030003	--
461952	1201154	17030003	--
461653	1205215	17030003	--
461840	1204713	17030003	122
462723	1205207	17030003	--

Site - ID 12506330 12506490 12506500 12506520 12506600 12506700 12506800 12506900 12506960 12506980 12507000 12507050 12507090 12507100 12507150 12507200 12507300 12507400 12507500 12507508 12507510 12507525 12507545 12507550 12507560 12507580 12507585 12507590 12507594 12507595 12507600 12507650 12507660 12507940 12507950 12508000 12508300 12508400 12508480 12508500 12508590 12508600 12508602 12508605 12508608 12508609

Station Name

SOUTH FORK SIMCOE CREEK NEAR FORT SIMCOE, WA SIMCOE CREEK ABOVE SPRING CREEK NR FORT SIMCOE, WA SIMCOE CREEK BELOW SPRING CR NR FORT SIMCOE, WA SIMCOE CREEK AT MEDICINE VLY RD NR WHITE SWAN, WA AGENCY CREEK NEAR FORT SIMCOE, WA
SIMCOE CREEK NEAR WHITE SWAN, WA NORTH MEDICINE CREEK NEAR WHITE SWAN, WA SIMCOE CREEK AT BARKES ROAD NEAR WHITE SWAN, WA UNNAMED CREEK AT BARKES RD NR WHITE SWAN, WA DRAIN AT MOUNTAIN VIEW ROAD NEAR WHITE SWAN, WA TOPPENISH CREEK BL SIMCOE CR NR WHITE SWAN, WA UNNAMED DRAIN AT PROGRESSIVE RD NR HARRAH, WA MUD LAKE DRAIN NR HARRAH
MILL CR AT CANYON RD NR WHITE SWAN TRIB TO MILL CR AT TECUMSEH RD NR WHITE SWAN, WA TOPPENISH CR AT ISLAND RD NR HARRAH,WA TOPPENISH CREEK TRIBUTARY NEAR TOPPENISH, WASH. TOPPENISH CREEK NEAR TOPPENISH, WA TOPPENISH CR AT ALFALFA,WASH TOPPENISH CR AT INDIAN CHURCH RD NR GRANGER,WASH TOPPENISH CR NR SATUS,WASH
YAKIMA R BL TOPPENISH CR AT RM 79.6 NR GRANGER, WA YAKIMA RIVER (RIGHT CHANNEL) NEAR GRANGER, WA YAKIMA R BL TOPPENISH CR AT RM 78.1 NR GRANGER, WA COULEE DRAIN AT NORTH SATUS ROAD NEAR SATUS,WASH YAKIMA R ABV SATUS CR AT RM 73 NR SATUS,WA YAKIMA RIVER AT RM 72 AB SATUS CR NR SUNNYSIDE, WA YAKIMA R AT RM 71 AB SATUS CR NR SUNNYSIDE, WA SATUS CR ABV WILSON-CHARLEY CANYON NR TOPPENISH,WA SATUS CREEK AB SHINANDO CREEK NR TOPPENISH, WA SHINANDO CREEK TRIBUTARY NEAR GOLDENDALE, WASH SHINANDO CR NR GOLDENDALE, WASH
SATUS CREEK TRIBUTARY NEAR TOPPENISH, WASH SATUS CR ABV LOGY CR NR TOPPENISH LOGY CR NR TOPPENISH SATUS CREEK NEAR TOPPENISH, WA SATUS CREEK AT HIGHWAY 97 NEAR TOPPENISH, WA SATUS CREEK ABOVE DRY CREEK NEAR TOPPENISH, WA DRY CR NR TOPPENSIH
SATUS CR BELOW DRY CR NEAR TOPPENISH, WASH SATUS CREEK AT PLANK ROAD NEAR SATUS,WASH SATUS CR NR SATUS, WASH
SATUS CREEK ABOVE NORTH DRAIN NEAR SATUS, WA NORTH DRAIN ABOVE POND NEAR SATUS, WA NORTH DRAIN EASTSIDE SATUS ROAD NEAR SATUS, WA NORTH DRAIN AT MOUTH NEAR SATUS, WA

Latitude (Degrees)	Longitude (Degrees) 462641	Hydrologic Unit (OWDC)
462340	1205306	17030003
462340	1204835	--
462255	1204747	17030003
462027	1205148	17030003
462340	1204340	17030003
462653	1204809	17030003
462325	1203855	17030003
462311	1203852	17030003
462601	1203830	17030003
462230	1203710	17030003
462509	1203545	17030003
462232	1203600	17030003
461745	1204422	17030003
462132	1203738	17030003
462022	1203505	--
461731	1202130	17030003
461833	1202042	17030003
461850	1201300	17030003
461852	1201153	17030003
461839	1201120	17030003
461858	1200913	17030003
461829.6	1200831.5	17030003
461852	1200803	--
461749	1200842	--
461638	1200523	--
461611	1200530	17030003
461526	1200545	17030003
460100	1204054	17070106
460100.6	1203855.5	17030003
460017	1203832	17030003
460110	1203750	17070106
460527	1203257	17030003
461216	1202837	17030003
461236	1202853	17030003
461420	1202440	17030003
461408	1202505	17030003
461511	1202351	17030003
461513	1202426	17030003
461500	1202240	17030003
461725	1201312	--
461625	1200915	17030003
461624	1200849	17030003
461727	1200856	17030003
461626	1200843	17030003
461627	1200845	17030003

Drainage
Area
(Miles2)
--
--
81.5
--
--
--
--
--
--
--
409
--
--
--
--
--
1.24
-
625
599
625
--
--
--
--
--
4480
--
--
--
17.9
0.38
7.9
8.54
--
--
--
-
-

Site - ID
12508610 12508620 12508621 1250862120 1250862140 1250862220 1250862240 12508625 12508630 12508660 12508680 12508690 12508730 12508753 12508755 12508765 12508766 12508769 12508770 12508771 12508773 12508775 12508776 12508778 12508779 12508790 12508800 12508810 12508815 12508820 12508830 12508838 12508840 12508850 12508910 12508990 12508997 12508998 12509000 12509050 12509200 12509489 12509492 12509496 12509499 12509500

Station Name

SATUS CREFK AT NORTH SATUS ROAD AT SATUS, WASH SATUS CREEK AT GAGE AT SATUS, WA SATUS CR AT SATUS WEST INFLOW TO MCBRIDE LAKE NEAR SATUS, WA MCBRIDE LAKE OUTLET CREEK TO SATUS CR NR SATUS, WA TEAL LAKE NEAR SATUS, WA
TEAL LAKE OUTLET CREEK TO SATUS CREEK NR SATUS, WA YAKIMA R BLW SATUS CR AT RM 68 NR SATUS,WA SOUTH DRAIN NEAR SATUS, WA
SATUS DRAIN 302 AT HIGHWAY 22 NEAR MABTON, WA YAKIMA R ABOVE SULPHUR CR AT RM 61.3 NR MABTON,WA SATUS DRAIN 303 AT LOONEY ROAD NEAR MABTON,WASH SULPHUR CREEK NR SUNNYSIDE WASH DRAIN 61.0 AT SLI RD. NR SUNNYSIDE, WASH DRAIN 61.0 NR SUNNYSIDE,WA(DAILY SEDIMENT X 100 DRAIN 60.7 AT SLI RD. NR SUNNYSIDE, WASH. DRAIN 60.5 AT SLI RD. NR SUNNYSIDE, WASH DRAIN 60.7 NEAR SUNNYSIDE, WASH.
DRAIN 59.6 AT SLI RD. NR SUNNYSIDE, WASH DRAIN 60.0 AT SLI RD. NR SUNNYSIDE, WASH DRAIN 60.2 AT SLI RD. NR SUNNYSIDE, WASH DRAIN 59.6 BLW DR. 60.2 NR SUNNYSIDE, WASH. DRAIN 59.4 AT SLI RD. NR SUNNYSIDE, WASH
DRAIN 59.4 TRIB AT SLI RD. NR SUNNYSIDE, WASH DRAIN 59.4 NR SUNNYSIDE,WA(DAILY SEDIMENT X 100 DID 18 DRAIN AT SUNNYSIDE WASH YAKIMA RIVER TRIBUTARY NEAR SUNNYSIDE, WASH WASHOUT DRAIN AT SUNNYSIDE WASH BLACK CANYON CR NR SUNNYSIDE WASH BLACK CANYON CREEK AT WANETA RD NR SUNNYSIDE, WA DID 9 DRAIN NR SUNNYSIDE WASH DID 3 DRAIN BLW STP AT MIDVALE RD AT SUNNYSIDE, WA DID 3 DRAIN NR SUNNYSIDE WASH SULPHUR CR WASTEWAY NR SUNNYSIDE WASH SATUS DRAIN 303 AT HWY 22 AT MABTON,WA YAKIMA RIVER AT MABTON, WASH. GRANDVIEW DRAIN AT CHASE ROAD NR GRANDVIEW,WASH DRAIN TO YAKIMA R 1 MI ABOVE EUCLID BR AT GRANDVIE YAKIMA RIVER NEAR MABTON, WA
YAKIMA R AT EUCLID BR AT RM 55 NR GRANDVIEW,WA DRAIN TO YAKIMA R ABOVE PROSSER,WA YAKIMA R AT PROSSER
JD 52.8 AT WAMBA ROAD AT PROSSER, WA
SHELBY DRAIN AT SHELBY ROAD AT PROSSER,WASH CHANDLER CANAL AT BUNN RD AT PROSSER, WA YAKIMA RIVER NEAR PROSSER, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
461623	1200844	--	--
461626	1200832	17030003	563
461627.6	1200748	17030003	--
461615.8	1200656.5	17030003	--
461556.7	1200644.5	17030003	--
461555	1200643.1	17030003	--
461506	1200545	--	--
461535	1200757	17030003	--
461428	1200542	17030003	--
461415	1200132	--	--
461257	1200202	--	--
462254	1195723	--	--
462140	1195544	17030003	--
462049	1195628	17030003	--
462140	1195604	17030003	--
462140	1195614	17030003	--92
462054	1195705	17030003	0.
462140	1195655	17030003	--
462140	1195647	17030003	--
462140	1195629	17030003	--
462110	1195658	17030003	0.68
462140	1195723	17030003	--
462140	1195707	17030003	--
462109	1195702	17030003	--
461929	1195838	17030003	14.7
462520	1195623	17030003	1.91
461835	1195924	17030003	--
462050	1195354	--	--
461722	1195842	17030003	35.8
461700	1195953	17030003	27.1
461728	1200148	17030003	--
461658	1200030	17030003	18.8
461503	1200107	17030003	--
461302	1200108	--	--
461353	1195954	17030003	5360
461346	1195528	--	--
461327	1195548	--	-
461300	1195510	17030003	5380
461301	1195500	17030003	5400
461144	1195102	--	--
461237	1194632	17030003	--
461245	1194640	17030003	--
461319	1191524	--	--
461327	1194408	17030003	--
461300	1194500	17030003	5450

Site - ID 12509600 12509612 12509614 12509620 12509638 12509640 12509650 12509660 12509666 12509670 12509674 12509678 12509682 12509690 12509696 12509698 12509700 12509710 2509800 12509820 12509829 12509830 12509850 12509900 12510200 12510500 12510600 12510618 2510620 2510625 12510650 12510655 12510700 12510800 12510950 12511000 12511016 12511020 12511030 12511034 12511038 12511040 12511050 12511520 12511800 12511900

Station Name

KID CANAL NR CHANDLER, WA
KID BADGER WEST LATERAL AT HEAD NR KIONA, WA KID BADGER EAST LATERAL AT HEAD NR KIONA, WA KID CANAL AT BADGER CANYON RD NR KIONA, WA KID CANAL AT CLODFELTER RD NR KENNEWICK WA AMON WASTEWAY BLW KID PUMP NR KENNEWICK, WA KID HIGHLAND FEEDER CANAL AT HEAD NR KENNEWICK, WA KENNEWICK CANAL AT S ELY ST. AT KENNEWICK, WA KID HIGHLIFT CANAL DUMP TO CORP DRAIN NR KENNEWICK KID DIVISION 4 CANAL AT HEAD NR KENNEWICK, WA KID AMON PUMP LATERAL AT HEAD NR KENNEWICK, WA KID DIVISION 4 WASTEWAY NR MOUTH NR FINLEY, WA YAKIMA RIVER NEAR BUNN RD AT PROSSER, WA YAKIMA R AB SNIPES CR \& SPRING CR NR WHITSTRAN, WA SPRING CREEK AT HANKS RD NR PROSSER, WA
SPRING CREEK AT MCCREADIE RD NR PROSSER SPRING CREEK AT HESS ROAD NEAR PROSSER,WASH SPRING CREEK AT MOUTH AT WHITSTRAN, WA SNIPES CR TRIBUTARY NR BENTON CITY, WASH. SNIPES CREEK NEAR PROSSER,WASH SNIPES CREEK AT MOUTH AT WHITSTRAN, WA SNIPES CR PLUS SPRING CR AT WHITSTRAN,WA YAKIMA RIVER NEAR HOSKO RD YAKIMA R ABOVE CHANDLER PUMP AT RM 35.9 NR WHITSTR CORRAL CANYON CR AT MOUTH NR BENTON CITY, WA YAKIMA RIVER AT KIONA, WASH.
WEBBER CANYON NEAR KIONA, WASH.
COLD CREEK AT COUNTY LINE NR PRIEST RAPIDS DAM, WA COLD CR TRIBUTARY NR PRIEST RAPIDS DAM, WASH. COLD CREEK AT HIGHWAY 24 NR PRIEST RAPIDS DAM, WA DRY CR AT HIGHWAY 241 NR PRIEST RAPIDS DAM, WA DRY CR NR RATTLESNAKE SP NR PRIEST RAPIDS DAM, WA. YAKIMA RIVER TRIBUTARY NEAR KIONA, WASH YAKIMA R AT RM 24 NR BENTON CITY,WA
YAKIMA RIVER AB HORN RAPIDS DAM NR RICHLAND, WA CID CANAL AT HORN RAPIDS DAM NR WEST RICHLAND, WA CID WASTEWAY AT COLUMBIA PARK AT KENNEWICK, WA CID CANAL AT GRANT STREET BRIDGE AT KENNEWICK, WA CID NO. 2 CANAL AT HEAD AT KENNEWICK, WA CID NO. 2 CANAL WASTEWAY NR FINLEY, WA CID NO. 2 CANAL AT END AT FINLEY, WA CID NO. 3 CANAL AT HEAD AT KENNEWICK, WA CID NO. 1 CANALAT HEAD AT KENNEWICK, WA YAKIMA R BELOW HORN RAPIDS DAM NR RICHLAND,WA YAKIMA RIVER AT VAN GEISAN BR NR RICHLAND YAKIMA RIVER AT I-182 HWY BRIDGE AT RICHLAND, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainag Area (Miles2)
461537	1193441	--	--
461246	1192138	17030003	--
461244	1192136	17030003	--
461155	1192153	--	--
461120	1191514	--	--
461131	1191412	--	--
461134	1191419	17030003	--
461203	1190929	17030003	--
460943	1190602	--	--
461139	1191411	17030003	--
461126	1191312	17030003	--
460609	1185849	--	--
461325	1194346	17030003	--
461327	1194138	17030003	--
461622	1194417	17030003	--
461527	1194237	17030003	34
461402	1194102	--	44.7
461400	1194038	17030003	41.5
462015	1193930	17030003	5.18
461432	1194048	--	33.6
461402	1194037	17030003	34.2
461358	1194031	--	--
461423	1193902	17030003	--
461558	1193518	--	--
461703	1193206	17030003	25.1
461513	1192837	17030003	5620
461113	1192723	17030003	2.88
463510	1195227	17030003	--
463538	1195144	17020016	0.89
463414	1194717	17030003	--
463129	1195224	17030003	--
463028	1194153	17030003	--
461553	1192316	17030003	3.35
461926	1192920	--	--
462246	1192525	17030003	--
462242	1192502	--	--
461358	1191158	--	--
461343	1191133	--	--
461207	1190628	--	--
461055	1190147	--	-
460953	1190055	--	
461201	1190647	--	--
461203	1190627	--	--
462208	1192356	--	--
461750	1191956	17030003	--
461515	1191708	17030003	--

Site - ID
12512000 12512100 12512150 12512500 12512550 12512600 12512700 12513000 12513300 12513400 12513500 12513600 12513650 12513700 12514000 12514095 12514100 12514400 12514500 13000000 13214000 13269000 13272500 13273000 13275300 13277000 13285000 13285500 13286700 13288200 13290190 13290450 13292000 13317000 13320000 13324280 13324300 13326000 13329770 13330000 13330050 13330300 13330500 13330700 13331450 13331500

Station Name

YAKIMA RIVER NR RICHLAND WASH
AMON WASTEWAY TRIB AT MEADOW SPRINGS AT RICHLAND AMON WASTEWAY NR MOUTH NR RICHLAND, WA PROVIDENCE COULEE AT CUNNINGHAM, WASH. PROVIDENCE COULEE NEAR CUNNINGHAM, WASH. HATTON COULEE TRIB NO. 2 NR CUNNINGHAM, WASH. HATTON COULEE TRIBUTARY NEAR HATTON, WASH ESQUATZEL COULEE AT CONNELL, WA DUNNIGAN COULEE NR CONNELL WASH. ESQUATZEL COULEE AT MESA, WA ESQUATZEL COULEE AT ELTOPIA, WA ESQUATZEL COULEE AT SAGEMOOR RD NR PASCO, WA ESQUATZEL DIV CHANNEL BL HEADWORKS NR PASCO, WA ESQUATZEL DIV CHANNEL NR MOUTH NR RICHLAND, WA COLUMBIA R AT PASCO WASH
ZINTEL CNYN WSTWY ABV VANCOUVER ST AT KENNEWICK,WA ZINTEL CANYON WASTEWAY NR MOUTH NR KENNEWICK, WA COLUMBIA RIVER BELOW HWY 395 BRIDGE AT PASCO, WA COLUMBIA RIVER ON CLOVER ISLAND AT KENNEWICK,WA SPOKANE FIELD OFFICE TEST STATION, WA.
MALHEUR RIVER NR DREWSEY, OR
SNAKE RIVER AT WEISER, ID
UNITY RESERVOIR NEAR UNITY, OR
BURNT RIVER NEAR HEREFORD, OR
POWDER RIVER NEAR SUMPTER, OR POWDER RIVER AT BAKER, OR
THIEF VALLEY RESERVOIR NR POWDER, OR
POWDER R BL T VLY RES NR NORTH POWDER,OREG.
POWDER RIVER NEAR RICHLAND,OREG.
EAGLE C AB SC NR NEW BRIDGE, OREG.
PINE CREEK NEAR OXBOW, OREGON
SNAKE RIVER AT HELLS CANYON DAM ID-OR STATE LINE IMNAHA RIVER AT IMNAHA,OREG.
SALMON RIVER AT WHITE BIRD, ID CATHERINE CREEK NEAR UNION, OREG
LOOKINGGLASS CR BLW INTAKE NR LOOKING GLASS, OR LOOKINGGLASS CREEK NEAR LOOKING GLASS, OR. WALLOWA LAKE NEAR JOSEPH,OREG
WALLOWA R ABV CROSS CNTY CANAL NR ENTERPRISE, OR LOSTINE RIVER NEAR LOSTINE, OREG.
LOSTINE RIVER AT CAUDLE LANE AT LOSTINE, OR
LOSTINE RIVER AT BAKER ROAD NR LOSTINE, OR BEAR CREEK NEAR WALLOWA, OREG BEAR CREEK AT WALLOWA, OR
WALLOWA RIVER BELOW WATER CANYON, NR WALLOWA, OR MINAM RIVER AT MINAM,OREG.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
461510	1191530	17030003	6120
461307	1191520	--	--
461427	1191527	--	--
464920	1184836	17020016	27.8
464811	1184855	17020016	52.1
464924	1184149	17020016	2.44
464550	1184756	17020016	3.71
463949	1185144	17020016	234
463439	1185126	17020016	27.1
463518	1190000	17020016	269
462745	1190040	17020016	551
462313	1190406	17020016	453
462148	1190516	17020016	798
462131	1191458	--	--
461300	1190555	17020016	104000
461205	1190857	17020016	--
461253	1190824	--	--
461332	1190725	17020016	104000
461300	1190629	17020016	104000
473934	1172653	17010305	--
434705	1181950	--	910
441444	1165848	--202	69200
443013	1181045	17050202	309
443014	1181035	17050202	309
444020	1175940	17070101	168
444606	1174950	17050203	351
450115	1174700	17050203	826
450050	1174700	17050203	910
444640	1171730	17050203	1310
445250	1171510	17050203	156
445713	1165221	--	--
451505	1164150	17050203	--
453345	1165000	17060102	622
454501	1161923	--	13600
450920	1174626	17060104	105
454406	1175148	17060104	--
454355	1175150	17060104	78.3
452010	1171315	17060105	50.8
452918	1172410	--	--
452620	1172535	17060105	70.9
452922	1172608	--	--
453214	1172843	--	--
453137	1173305	17060105	68
453450	1173221	--	--
453630	1173655	--	--
453712	1174332	17060105	240

Site - ID
13331800 13333000 13334000 13334300 13334310 13334360 13334400 13334420 13334450 13334500 13334700 13334900 13335050 13335200 13335249 3335299 13336500 13337000 3338500 13340000 13340600 13341000 13341050 13341470 13341600 13342450 13342500 13342600 13343000 3343009 13343190 13343220 13343400 13343450 13343500 13343505 13343510 13343520 13343530 13343560 13343590 13343595 13343600 13343620 13343660 13343680

Station Name
WALLOWA RIVER NEAR MINAM OR
GRANDE RONDE RIVER AT TROY, OREG.
GRANDE RONDE RIVER AT ZINDEL, WASH
SNAKE RIVER NEAR ANATONE, WA
CAPTAIN JOHN CREEK AT MOUTH NEAR LEWISTON, ID COUSE CREEK AT MOUTH NEAR ASOTIN, WASH MILL CR AT ANATONE, WASH
TENMILE CREEK AT MOUTH NEAR ASOTIN, WASH ASOTIN CREEK BELOW CONFLUENCE NEAR ASOTIN, WA ASOTIN CREEK NEAR ASOTIN, WASH.
ASOTIN CR BLW KEARNEY GULCH NR ASOTIN, WASH PINTLER CREEK NEAR ANATONE, WASH ASOTIN CREEK AT ASOTIN, WA
CRITCHFIELD DRAW NR CLARKSTON, WASH.
TAMMANY CREEK AT MOUTH, NEAR LEWISTON, ID
SNAKE RIVER AT MILE 139.43 AT LEWISTON, ID
SELWAY RIVER NR LOWELL, ID
LOCHSA RIVER NR LOWELI, ID
S.F. CLEARWATER RIVER AT STITES, ID

CLEARWATER RIVER AT OROFINO, ID
N.F. CLEARWATER RIVER NR CANYON RANGER STATION, ID NORTH FORK CLEARWATER RIVER AT AHSAHKA, ID CLEARWATER RIVER NR PECK, ID
LITTLE BEAR CR AT TROY, ID
ARROW GULCH NR ARROW, ID
LAPWAI CR NR LAPWAI, ID
CLEARWATER RIVER AT SPALDING, ID
HATWAI CREEK AT MOUTH NEAR LEWISTON, IDAHO CLEARWATER RIVER NEAR LEWISTON, ID LOWER GRANITE RES AT EAST LEWISTON, ID CLEARWATER RIVER AT MILE 0.41 AT LEWISTON, ID SNAKE RIVER AT MILE 137.17 AT CLARKSTON, WA DRY CREEK NEAR CLARKSTON, WA
DRY CREEK AT MOUTH NR CLARKSTON, WASH SNAKE RIVER NEAR CLARKSTON, WASH. SNAKE RIVER ABOVE ALPOWA CR NR ANATONE, WA ALPOWA CR AT PEOLA, WASH.
CLAYTON GULCH NR ALPOWA, WASH
ALPOWA CREEK AT MOUTH NEAR CLARKSTON, WASH STEPTOE CANYON CREEK AT MOUTH NEAR CLARKSTON, WA LOWER GRANITE LK FOREBAY AT LOWER GRANITE DAM, WA SNAKE RIVER BL LOWER GRANITE DAM (RB), WA SNAKE RIVER BELOW LOWER GRANITE DAM, WASH SOUTH FORK DEADMAN CREEK TRIB NR PATAHA, WASH SMITH GULCH TRIBUTARY NEAR PATAHA, WASH. DEADMAN CR NR CENTRAL FERRY, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainag Area (Miles2)
453637	1173615	--	--
455645	1172700	17060106	3280
460413	1170016	17060106	3950
460550	1165836	17060103	93000
460910	1165555	17060103	27
461217	1165800	17060103	24.1
460804	1170751	17060103	2.74
461752	1165928	17060103	41.9
461625	1171729	17060103	104
461940	1171220	17060103	156
461935	1170906	17060103	170
460759	1170956	17060103	0.86
462027	1170318	17060103	323
462228	1170507	17060103	1.8
462154	1170336	17060103	34.9
462519	1170208	--	--
460512	1153046	--	1910
460902	1153511	--	1180
460512	1155832	--	1150
462843	1161523	--	5580
465026	1153711	--	1360
463011	1161918	--	2440
463000	1162330	--	8040
464358	1164547	--	--
462823	1164617	--	--
462536	1164815	--	235
462655	1164935	17060306	9570
462600	1165446	17060306	32.5
462606	1165736	17060306	9640
462528	1165904	--	--
462534	1170140	--	--
462523	1170432	17060103	--
462310	1170814	17060107	2.34
462427	1170621	17060103	6.83
462541	1170951	17060107	103000
462519	1171044	17060107	103000
461903	1172928	17060107	0.5
462652	1171736	17060107	5.6
462444	1171245	17060107	129
462710	1171217	17060107	23.5
463934	1172531	17060107	--
463958	1172629	17060107	--
464004	1172638	17060107	--
462845	1172448	17060107	0.54
462924	1172642	17060107	1.85
463650	1174707	17060107	135

Site - ID
13343700 13343790 13343800 13343855 13343860 13344000 13344300 13344500 13344506 13344508 13344510 13344520 13344620 13344700 13344800 13345000 13345300 13345310 13345500 3345510 13346000 13346050 13346100 13346400 13346450 13346500 13346600 13346700 13346750 13346760 3346770 13346990 13347000 13347500 13348000 13348400 13348500 13348505 13348520 3349000 3349200 13349210 13349220 13349300 13349302 13349309

Station Name
BEN DAY GULCH TRIBUTARY NR POMEROY, WASH. MEADOW CR TRIBUTARY NR CENTRAL FERRY, WASH. MEADOW CREEK NR CENTRAL FERRY, WASH. LAKE BRYAN FOREBAY AT LITTLE GOOSE DAM, WA SNAKE RIVER BELOW LITTLE GOOSE DAM, WA
TUCANNON RIVER NR POMEROY, WASH
PATAHA CR NR POMEROY
TUCANNON RIVER NEAR STARBUCK, WASH.
KELLOGG CR TR NO. 2 NR STARBUCK, WASH.
KELLOGG CR TRIB NR STARBUCK, WASH.
KELLOG CREEK AT STARBUCK, WA
TUCANNON R AT POWERS
PALOUSE RIVER NEAR HARVARD, ID
DEEP CR TRIB NR POTLATCH, ID
DEEP CREEK NEAR POTLATCH, ID
PALOUSE RIVER NR POTLATCH, ID
PALOUSE RIVER AT PALOUSE, WASH.
PALOUSE RIVER AT STATE ROUTE 272 NEAR PALOUSE, WA PALOUSE RIVER AT ELBERTON, WA
PALOUSE RIVER AT ELBERTON ROAD NR ELBERTON, WA PALOUSE RIVER NEAR COLFAX, WASH.
PALOUSE R ABV BUCK CANYON AT COLFAX
PALOUSE RIVER AT COLFAX, WASH
S.F. PALOUSE RIVER TRIBUTARY NR PULLMAN, WASH. S.F. PALOUSE RIVER NR MOSCOW, ID

SO FK PALOUSE R ABV PARADISE C NR PULLMAN, WASH. S.F. PALOUSE R BLW SUNSHINE CR AT PULLMAN, WASH PARADISE CR AT D ST AT MOSCOW, ID
PARADISE CR AT MOSCOW, ID
PARADISE CREEK AT STP NEAR MOSCOW, ID
PARADISE CREEK BELOW STP NEAR MOSCOW, ID PARADISE CREEK AT PULLMAN, WASH.
PARADISE CR NR PULLMAN, WASH.
DRY FORK OF S F PALOUSE R AT PULLMAN WASH SOUTH FORK PALOUSE RIVER AT PULLMAN, WASH. MISSOURI FLAT CREEK TRIB NEAR PULLMAN, WASH. MISSOURI FLAT CREEK AT PULLMAN, WASH STP OUTFLOW TO SF PALOUSE RIVER AT PULLMAN, WA S F PALOUSE R NR PULLMAN
FOURMILE CR AT SHAWNEE, WASH.
S.F. PALOUSE RIVER AT COLFAX, WA

PALOUSE RIVER BELOW SOUTH FORK AT COLFAX, WASH.
PALOUSE RIVER BELOW STP NEAR COLFAX, WA
PALOUSE RIVER TRIBUTARY AT COLFAX, WASH.
PALOUSE R NR DIAMOND
PALOUSE R TRIBUTARY AT WINONA, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
463220	1173525	17060107	0.78
463506	1174451	17060107	1.63
463551	1174654	17060107	66.2
463506	1180132	17060107	--
463459	1180231	17060107	--
462630	1174450	17060107	160
462840	1173320	--	--
463020	1180355	17060107	431
462846	1180647	17060107	2.95
463003	1180750	17060107	6
463038	1180747	17060107	35.3
463218	1180918	17060107	--
465700	1164020	--	--
470128	1165257	--	--
465738	1165604	--	--
465455	1165700	17060108	317
465436	1170407	17060108	360
465452	1170505	17060108	345
465850	1171310	17060108	406
465837	1171359	17060108	452
465515	1171904	17060108	491
465428	1172014	17060108	--
465350	1172120	17060108	497
463855	1170505	17060108	--
464241	1165845	--	--
464220	1170955	17060108	84.4
464307	1170948	17060108	--
464345	1165832	--	--
464326	1165846	--	--
464355	1170124	--	17.1
464352	1170207	--	18.7
464316	1170810	17060108	34
464310	1170930	17060108	34.5
464325	1171110	17060108	7.28
464357	1171048	17060108	132
464552	1171001	17060108	0.88
464359	1171047	17060108	27.1
464420	1171117	17060108	--
464512	1171246	17060108	--
464955	1171620	17060108	71.6
465232	1172042	17060108	274
465323	1172209	17060108	796
465333	1172244	17060108	788
465322	1172259	17060108	2.1
465542	1172451	17060108	--
465737	1194812	17060108	2.94

Site - ID 13349310 13349320 13349325 13349340 13349350 13349400 13349410 13349500 13349670 13349690 13349700 13349800 13349850 13349860 13349900 13350000 13350300 13350448 13350500 13350700 13350800 13350900 13351000 13351300 13351495 13351500 13351520 3351800 13352000 3352200 13352500 13352550 3352595 13352600 13352950 13353000 13353010 13353050 3353200 14000000 14005000 14006000 14012600 14013000 14013500 14013600

Station Name

PALOUSE RIVER AT WINONA,WASH.
REBEL FLAT CREEK AT WINONA, WA
PHILLEO DITCH NR CHENEY, WA
PINE CR AT ROSALIA, WASH
HARDMAN DRAW TRIBUTARY AT PLAZA, WASH
PINE CREEK AT PINE CITY, WA
PINE CREEK AT PINE CITY ROAD AT PINE CITY, WA ROCK CREEK NEAR EWAN, WASH
PLEASANT VALLEY CR TRIBUTARY NR THORNTON, WASH.
COTTONWOOD C BL PLEASANT VALLEY C NR EWAN,WASH ROCK CREEK BELOW COTTONWOOD CREEK NEAR REVERE, WA IMBLER CR TRIBUTARY NEAR LAMONT, WASH. ROCK CREEK NEAR REVERE, WA
ROCK CREEK AT BREEDEN ROAD BRIDGE NEAR REVERE, WA ROCK CR NR WINONA,WASH
PALOUSE RIVER AT WINONA, WASH.
UNION FLAT CR NR COLTON, WASH
COW CR AT GENESEE, ID
UNION FLAT CREEK NEAR COLFAX, WASH
UNION FLAT CR NR LACROSSE,WASH
WILLOW CR TRIBUTARY NEAR LACROSSE, WASH
WILLOW CR AT GORDON,WASH.
PALOUSE RIVER ATHOOPER WA
SILVER LAKE AT MEDICAL LAKE,WASH
BADGER LAKE NR AMBER,WASH
WILLIAMS LAKE NEAR AMBER, WASH.
AMBER LAKE AT AMBER, WA
SPRAGUE LAKE NR SPRAGUE,WASH
COW CR AT OUTLET OF COLVILLE LAKE NR KEYSTONE, WA COW CREEK TRIBUTARY NEAR RITZVILLE, WASH
COW CREEK AT HOOPER, WASH
STEWART CANYON TRIB NEAR RIPARIA, WASH
LAKE H G WEST FOREBAY AT LOWER MONUMENTAL DAM, WA SNAKE RIVER BELOW LOWER MONUMENTAL DAM, WA
LAKE SACAJAWEA FOREBAY AT ICE HARBOR DAM, WA SNAKE RIVER BLW ICE HARBOR DAM, WASH. SNAKE RIVER BL GOOSE ISLAND BL ICE HARBOR DAM, WA SMITH CANYON TRIBUTARY NEAR CONNELL, WASH.
SNAKE RIVER AT BURBANK WASH
PASCO FIELD OFFICE TEST' STATION, WA.
COLUMBIA RIVER AT FINLEY,WASH.
CID NO. 3 CANAL AT END NR FINLEY, WA
WALLA WALLA R NR COLLEGE PLACE
MILL CREEK NEAR WALLA WALLA, WASH.
BLUE CREEK NEAR WALLA WALLA, WASH MILL CR BLW BLUE CR NR WALLA WALLA, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)
465640	1174810	17060108
465636	1174749	17060108
472407	1172948	17060109
471430	1172225	17010306
471836	1172314	17060109
471224	1173014	17060109
471216	1173125	17060109
470822	1174326	17060109
470230	1172619	17060109
470651	1173944	17060109
470616	1174713	17060109
470951	1175256	17060109
470425	1175603	17060109
470333.6	1175759.1	17060108
465459	1175537	17060109
465435	1175540	17060108
463435	1170855	17060108
463248	1165537	--
464837	1172552	17060108
465142	1175333	17060108
464526	1175508	17060108
464554	1180123	17060108
464531	1180852	17060108
473424	1173905	17060108
472019	1173847	17060108
472005	1174001	17060108
472035	1174315	17060108
471723	1180116	17060108
471339	1180639	17060108
471038	1181131	17060108
464546	1180846	17060108
463821	1180741	17060108
463314	1183252	17060110
463314	1183252	17060108
461458	1185242	17060110
461502	1185255	17060110
461432	1185620	17060110
463228	1184554	17060110
461259	1190122	17060110
461846	1191528	17020016
461036	1190111	17070101
460747	1190027	--170
460046	1182318	17070102
460029	1180703	17070102
460330	1180810	17070102
460455	1181125	17070102

Drainage
Area
(Miles2)

986
73.2
14.7
--
1.64
302
302
523
0.77
110
--
1.33
--
--
954
2060
--
--
189
294
0.95
67.4
2500
19
--
23.4
--
289
117
1.51
679
1.27
--
--
108000
--
1.8
109000

--
--
59.6
17
91

Site - ID
14013700 14014000 14014400 14014500 14015000 14015002 14015400 14015550 14015900 14016000 14016050 14016100 14016500 14016600 14016610 14016640 14016650 14016700 14016800 14016810 14016900 14016950 14017000 14017040 14017070 14017100 14017120 14017200 14017490 14017500 14017600 14018000 14018500 14018600 14019000 14019100 14019200 14019210 14019220 14019240 14020000 14020300 14020520 14020740 14020760 14020850

Station Name

MILL CR AT FIVE MILE RD BRIDGE NR WALLA WALLA, WA YELLOWHAWK CR AT WALLA WALLA, WASH.
YELLOWHAWK CR NR COLLEGE PLACE, WASH.
GARRISON CR AT WALLA WALLA, WASH.
MILL CREEK AT WALLA WALLA, WASH.
MILL CR AT TAUSICK WAY AT WALLA WALLA
MILL CR AT MISSION RD BR NR COLLEGE PLACE WALLA WALLA R NR LOWDEN,WASH.
SPRING CREEK TRIBUTARY NEAR WALLA WALLA, WASH DRY CREEK NEAR WALLA WALLA, WASH.
DRY CR AT LOWDEN,WASH.
PINE CR NR TOUCHET,WASH.
NORTH FORK TOUCHER RIVER AT DAYTON, WA HATLEY CREEK NEAR DAYTON, WASH
EF TOUCHET R BL HATLEY CR NR DAYTON,WASH EAST FORK TOUCHET RIVER AT DAYTON, WASH.
DAVIS HOLLOW NEAR DAYTON, WASH.
SOUTH FORK TOUCHET RIVER AT DAYTON, WASH. PATIT CR NR DAYTON,WASH.
TOUCHET RIVER NEAR DAYTON, WASH.
WHISKEY CR NR WAITSBURG,WASH
COPPEI CR NR WAITSBURG,WASH
TOUCHET RIVER AT BOLLES, WASH.
THORN HOLLOW NEAR DAYTON, WASH.
EAST FORK MCKAY CREEK NEAR HUNTSVILLE, WASH.
WHETSTONE HOLLOW AT PRESCOTT,WASH
TOUCHET R NR LAMAR,WASH.
BADGER HOLLOW NEAR CLYDE, WASH.
TOUCHET RIVER TRIBUTARY NEAR LOWDEN, WA TOUCHET R NR TOUCHET, WASH.
TOUCHET RIVER AT TOUCHET
ATTALIA IRRIGATION DISTRICT CANAL NR WALLULA, WA WALLA WALLA RIVER NEAR TOUCHET, WASH.
WALLA WALLA R BL WARM SPR CR NR TOUCHET
WALLA WALLA RIVER NEAR WALLULA, WA WALLA WALLA RIVER TRIBUTARY NEAR WALLULA, WASH. COLUMBIA RIVER AT MCNARY DAM,NEAR UMATILLA,OR COLUMBIA R FOREDAY AT MCNARY DAM NR UMATILLA, OR COLUMBIA RIVER AT MCNARY DAM LOCK, NR UMATILLA, OR COLUMBIA RIVER BELOW MCNARY DAM NEAR UMATILLA, OR UMATILLA RIVER ABOVE MEACHAM CREEK NR GIBBON, OR MEACHAM CREEK AT GIBBON,OREG.
SQUAW CREEK NEAR GIBBON, OR
MOONSHINE CR NR MISSION, OR
COTTONWOOD CR NR MISSION, OR
UMATILLA R AT W RESERVATION BNDY NR PENDLETON, OR

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
460509	1181338	17070102	--
460420	1181655	17070102	--
460120	1182315	17070102	--
460425	1181710	17070102	--
460435	1181621	17070102	95.7
460434	1181658	17070102	--
460232	1182812	17070102	--
460253	1183314	--	429
460615	1181121	17070102	1.94
460720	1181410	17070102	48.4
460325	1183523	17070102	246
460044	1183653	17070102	168
461645	1175405	17070102	102
461652	1175337	17070102	4.12
461645	1175405	--	106
461753	1175705	17070102	108
461800	1175710	17070102	3.01
461613	1175646	17070102	39
462025	1175702	--	53.5
461726	1180240	17070102	--
461440	1180441	--	--
461545	1180907	17070102	34.1
461628	1181315	17070102	361
462050	1180355	17070102	2.68
462147	1180757	17070102	4.92
461757	1181938	17070102	101
461714	1182913	17070102	--
462457	1182016	17070102	4.16
460910	1183825	17070102	4.7
460230	1184100	17070102	733
460229	1184059	17070102	--
460400	1185130	17070102	--
460140	1184343	17070102	1660
460216	1184555	17070102	--
460400	1185130	17070102	1760
460312	1185258	17070102	0.8
455558.2	1191743.7	17070101	214000
455739	1191745	17070101	214000
455826	1191747	17070101	--
455601	1191931	17070101	--
454311	1181920	17070103	131
454120	1182120	17070103	176
454000	1182400	17070103	32.6
453937	1183542	--	4.62
453938	1183352	--	4.01
454018	1184408	--	--

Site - ID 14021980 14022200 14033500 14034040 14034100 14034250 14034270 14034280 14034320 14034325 14034350 14034470 14034480 14034490 14034500 14034550 14034580 14034600 14036500 14036600 14036860 14038530 14044000 14046000 14046500 14048000 14103000 14105700 14106000 14106500 14107000 14108000 14108200 14108500 14109000 14109500 14110000 14110480 14110490 14110700 14110720 14110800 14111100 14111400 14111500 14111700

Station Name

PATAWA CR AT WEST BOUNDARY NR PENDLETON OR
NORTH FORK MCKAY CREEK NEAR PILOT ROCK,OREG
UMATILLA R NR UMATILLA OREG
BOFER CANYON TRIBUTARY NR KENNEWICK, WASH.
FOURMILE CANYON NR PLYMOUTH, WASH
GLADE CREEK TRIBUTARY NEAR BICKLETON, WASH EAST BRANCH GLADE CREEK NEAR PROSSER, WASH. EAST BRANCH GLADE CREEK TRIB NR PROSSER, WASH DEAD CANYON TRIB NEAR ALDERDALE, WASH. ALDER CREEK NEAR BICKLETON, WASH.
ALDER CR AT ALDERDALE, WASH.
WILLOW CREEK ABV WILLOW CR LAKE, NR HEPPNER, OR BALM FORK NEAR HEPPNER, OR
WILLOW CREEK LAKE AT HEPPNER, OR
WILLOW CREEK AT HEPPNER, OREG.
SHOBE CREEK AT HEPPNER, OR
HINTON CR BL KILKENNY FK NR HEPPNER, OR HINTON CREEK NEAR HEPPNER, OR ROCK CR NR GOLDENDALE, WASH. ROCK CREEK NEAR ROOSEVELT, WASH JOHN DAY R AT BLUE MTN HOT SPRINGS NR PRAIRIE CITY JOHN DAY RIVER NEAR JOHN DAY, OR M FK JOHN DAY R AT RITTER, OREG.
N FK JOHN DAY R AT MONUMENT, OREG.
JOHN DAY RIVER AT SERVICE CREEK, OR
JOHN DAY R AT MCDONALD FERRY,OREG
DESCHUTES RIVER AT MOODY, NEAR BIGGS OREG
COLUMBIA RIVER NEAR THE DALLES, OR
KLICKITAT RIVER ABOVE PEARL CREEK, NR GLENWOOD, WA PEARL CREEK NEAR GLENWOOD, WA
KLICKITAT R ABV WEST FK NR GLENWOOD, WASH.
WEST FORK KLICKITAT R NR GLENWOOD, WASH
KLICKITAT R BLW SODA SPR CR NR GLENWOOD
CUNNINGHAM CREEK NEAR GLENWOOD, WA
BIG MUDDY CR NR GLENWOOD, WASH.
COUGAR CREEK NEAR GLENWOOD, WA
KLICKITAT RIVER NEAR GLENWOOD, WASH
TROUT CR NR GLENWOOD
ELK CR NR GLENWOOD
MEDLEY CANYON CR NR GLENWOOD, WASH
OUTLET CR NR GLENWOOD,WASH
WHITE CR NR GLENWOOD
SUMMIT CR NR GLENWOOD
KLICKITAT R BL SUMMIT CR NR GLENWOOD, WA
KLICKITAT R BLW GLENWOOD
BUTLER CREEK NEAR GOLDENDALE, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
453911	1184439	--	30
453024	1183657	17070103	48.6
455411	1191933	17070103	2290
460342	1191322	17020016	1.53
455810	1191322	17070101	81.2
460407	1201223	17070101	0.5
460435	1193610	17070101	50.3
460739	1193610	17070101	0.77
455512	1195429	17070101	0.62
455949	1201631	17070101	8.35
455030	1195530	17070101	197
452027	1193053	17070104	67.6
451956	1193224	17070104	26.3
452050	1193237	17070104	96.6
452102	1193256	17070104	96.8
452000	1193337	17070104	--
452155	1192516	17070104	--
452152	1193118	17070104	--
454810	1203010	17070101	120
454455	1202604	17070101	213
442129	1183430	--	--
442507	1185419	17070101	386
445320	1190825	17070203	515
444850	1192550	17070202	2520
444738	1200020	17070204	5090
453516	1202430	17070204	7580
453720	1205405	17070306	10500
453900	1205800	17070105	237000
461850	1211530	17070106	131
461850	1211550	17070106	4
461554	1211438	17070106	151
461530	1211620	17070106	87
461258	1211609	17070106	-
461040	1211720	17070106	16
460906	1211733	17070106	--
460830	1211800	17070106	3.8
460520	1211530	17070106	360
460349	1211249	17070106	--
460322	1211152	17030003	--
455647	1211813	17070106	1.26
460101	1211228	17070106	124
460048	1210857	17070106	--
455911	1210729	17070106	--
455745	1210604	17070106	--
455613	1210703	17070106	--
455447	1204217	17070106	11.6

Site - ID
14111800 14112000 14112200 14112300 14112400 14112500 14113000 14120000 14121300 14121400 14121500 14122000 14122500 14122800 14122900 14123000 14123500 14124000 14124500 14125000 14125200 14125500 14126300 14126500 14126600 14127000 14127200 14127300 14127500 14128000 14128500 14128600 14143200 14143500 14144000 14144100 14144550 14144590 14144600 14144700 14211895 14211897 14211898 14211900 14211901 14211902

Station Name
W PRONG LITTLE KLICKITAT R NR GOLDENDALE, WASH. LITTLE KLICKITAT R NR GOLDENDALE, WASH. LITTLE KLICKITAT RIVER TRIB NR GOLDENDALE, WASH. SPRING CREEK NEAR BLOCKHOUSE, WASH.
MILL CREEK NEAR BLOCKHOUSE, WASH.
LITTLE KLICKITAT R NR WAHKIACUS, WASH
KLICKITAT RIVER NEAR PITT, WASH.
HOOD RIVER AT TUCKER BRIDGE, NR HOOD RIVER, OR WHITE SALMON R BLW CASCADES CR NR TROUT L, WASH WHITE SALMON R AB TR LK CR NR TROUT LK, WASH.
TROUT LAKE CREEK NR TROUT LAKE, WASH
WHITE SALMON RIVER NEAR TROUT LAKE, WASH.
WHITE SALMON R AT SPLASH DAM NR TROUT LK, WASH. PHELPS C NR B-Z CORNER, WASH.
WHITE SALMON RIVER AT B-Z CORNER, WASH.
WHITE SALMON RIVER AT HUSUM, WASH.
WHITE SALMON R NR UNDERWOOD, WASH.
LITTLE WHITE SALMON R NR WILLARD, WASH
LITTLE WHITE SALMON RIVER AT WILLARD, WASH.
LTLE WHITE SALMON R ABV LAPHAM CR WILLARD, WASH. ROCK CREEK NEAR WILLARD, WASH.
LITTLE WHITE SALMON RIVER NEAR COOK, WASH.
COLUMBIA RIVER TRIBUTARY AT HOME VALLEY, WASH FALLS CREEK NEAR CARSON, WASH.
WIND R BLW DRY CR NEAR CARSON, WASH.
WIND R AB TROUT CREEK NR CARSON, WASH.
LAYOUT CR NR CARSON, WASH.
TROUT CREEK NEAR STABLER, WA
TROUT CREEK NEAR CARSON, WASH.
PANTHER CREEK NEAR CARSON, WASH.
WIND RIVER NEAR CARSON, WASH.
COLUMBIA R AT STEVENSON, WA
CANYON CREEK NEAR WASHOUGAL, WASH.
WASHOUGAL RIVER NEAR WASHOUGAL, WASH.
LITTLE WASHOUGAL RIVER NEAR WASHOUGAL, WASH.
WASHOUGAL R AT WASHOUGAL, WASH
SHANGHAI CREEK NEAR HOCKINSON, WASH
LACKAMAS LAKE AT CAMAS, WASH.
GROENEVELD CREEK NEAR CAMAS, WASH
COLUMBIA R AT VANCOUVER, WA
BURNT BRIDGE CREEK AT 112TH AVE AT VANCOUVER, WA BURNT BRIDGE CREEK AT BURTON ROAD AT VANCOUVER, WA BURNT BRIDGE CREEK AT 18TH STREET AT VANCOUVER, WA BURNT BRIDGE CREEK AT VANCOUVER, WA COLD CREEK AT MOUTH AT VANCOUVER, WA BURNT BRIDGE CREEK NEAR MOUTH AT VANCOUVER, WA

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
455530	1204311	17070106	10.4
455040	1204742	17070106	83.5
455015	1204750	17070106	0.71
455025	1205415	17070106	2.75
455134	1205749	17070106	26.9
455038	1210332	17070106	280
454524	1211232	17070106	1300
453920	1213250	17070105	279
460606	1213614	17070105	32.4
460150	1213150	17070105	64.9
460020	1213220	17070105	69.3
455930	1212930	17070105	185
455700	1212820	17070105	240
455301	1213113	17070105	1.88
455145	1213015	17070105	269
454750	1212900	17070105	294
454508	1213133	17070105	386
454800	1213830	17070105	39.2
454650	1213730	17070105	114
454600	1213740	17070105	117
454510	1213850	17070105	4.1
454325	1213758	17070105	134
454250	1214640	17070105	0.54
455420	1215620	17070105	24.3
455250	1215838		--179
454831	1215427	17070105	108
454901	1220250	17070105	1.8
454921	1220055	17070105	21
454800	1215500	17070105	30.3
454800	1215200	17070105	30.1
454337	1214737	17070105	225
454158	1215202	17070105	240000
453545	1221130	17080001	2.74
453730	1221655	17080001	108
453651	1222126	17080001	23.3
453511	1222110	17080001	--
454205	1222625	17080001	2.14
453616	1222422	17080001	--
453505	1222730	17080001	0.51
453715	1224020	17080001	241000
453930	1223324	17080001	3.6
453823	1223450	17080001	--
453806	1223721	17080001	18.9
453910	1223920	17080001	21.6
453933	1224000	17080001	2.71
453942	1224003	17080001	27.6

Site - ID 14211903 14212000 14212300 14212350 14212400 14212500 14213000 14213200 14213500 14214000 14214200 14214500 14215000 14215500 14216000 14216100 14216200 14216300 4216350 14216450 14216500 14216800 14216900 14217000 14217100 14217500 4217598 14217600 14217700 14217812 14218000 14218030 14218300 14218500 14219000 14219500 14219800 14220000 14220200 14220500 14221000 14221500 14221700 14222000 14222500 4222540

Station Nam

BURNT BRIDGE CREEK AT MOUTH AT VANCOUVER, WA SALMON CREEK NEAR BATTLE GROUND, WASH SALMON CR ABV WEAVER CR NR BRUSH PRAIRIE, WASH. BATTLEGROUND LAKE NR BATTLEGROUND, WASH
WEAVER CRK AT BRUSH PRAIRIE, WASH.
SALMON CREEK NEAR BRUSH PRAIRIE, WA SALMON CREEK NEAR VANCOUVER, WASH LEWIS RIVER NEAR TROUT LAKE, WASH
BIG CREEK BELOW SKOOKUM MDW NR TROUT LK, WASH. RUSH CREEK AB MEADOW CREEK NR TROUT LAKE, WASH. RUSH CREEK ABOVE MEADOW CREEK, NEAR GULER, WA MEADOW CR BLW LONE BUTTE MDW NR TROUT LK, WASH RUSH CREEK ABOVE FALLS NEAR COUGAR, WASH CURLY CREEK NEAR COUGAR, WASH
LEWIS RIVER AB MUDDY RIVER NR COUGAR, WASH.
MUDDY RIVER ABOVE SMITH CREEK NEAR COUGAR, WASH SMITH CREEK AT MOUTH NEAR COUGAR, WASH. CLEARWATER CREEK NEAR MOUTH NEAR COUGAR, WA MUDDY RIVER AB CLEAR CR NR COUGAR, WASH
CLEAR CREEK NEAR COUGAR, WASH
MUDDY CREEK BELOW CLEAR CREEK NEAR COUGAR, WA PINE CREEK NEAR COUGAR, WASH.
PINE CREEK AT MOUTH NEAR COUGAR, WASH.
LEWIS RIVER AT PETERSONS RANCH NR COUGAR, WA SWIFT CR 2 MILES ABV WEST FK NR COUGAR, WASH SWIFT CREEK NEAR COUGAR, WASH. SWIFT RESERVOIR AT CAMP CR NR COUGAR, WASH SWIFT RESERVOIR NEAR COUGAR, WASH SWIFT POWERPLANT NO 1 TAILRACE NR COUGAR, WASH. SWIFT POWERPLANT NO 2 HEADWATER NR COUGAR, WASH. LEWIS RIVER NEAR COUGAR, WASH SWI CREFK AT COUGAR WASH
YALE RESERVOIR NEAR YALE, WA
CANYON CREEK NR AMBOY, WA
LEWIS RIVER NEAR AMBOY, WASH
SPEELYAI CREEK NEAR COUGAR, WASH.
LAKE MERWIN AT ARIEL, WASH.
LEWIS R AT MERWIN DAM AT ARIEL, WASH. LEWIS RIVER AT ARIEL, WASH.
CHELATCHIE CREEK AT AMBOY, WA
CEDAR CREEK NEAR ARIEL, WASH.
LEWIS RIVER AT WOODLAND, WASH
EAST FORK LEWIS RIVER NR YACOLT, WA
EAST FORK LEWIS RIVER NEAR HEISSON, WASH
EAST FORK LEWIS RIVER NR BATTLEGROUND, WASH.

Latitude (Degrees)	Longitude (Degrees) 1224016	Hydrologic Unit (OWDC) 453942	17080001 Drainage
454626	1222640	17080001	(Miles2)

Site - ID
14222550 14222700 14222749 14222910 14222920 14222930 14222950 14222960 14222970 14222980 14222986 4223000 14223500 14223600 14223800 14224000 14224500 14224590 14224600 4225000 14225400 14225500 14226000 14226500 14226800 14226900 14227500 14228000 14228500 14229000 4229500 14230000 14230500 14231000 14231100 14231600 14231670 14231700 14231900 14232000 14232300 14232500 14233000 14233160 14233200 14233400

Station Name

EAST FORK LEWIS R NR DOLLAR CORNER, WASH EAST FK LEWIS R TRIB NR WOODLAND WASH KALAMA R ABOVE FOSSIL CR NEAR COUGAR, WASH COLUMBIA R AT KALAMA, WA
KALAMA R NR COUGAR, WASH
FOSSIL CREEK NR COUGAR, WASH.
DRY CREEK NEAR COUGAR, WASH.
MERRILL LAKE NEAR COUGAR, WASH.
SPRING CREEK NEAR COUGAR, WASH.
KALAMA RIVER BELOW FALLS NEAR COUGAR, WASH
KALAMA R BELOW SUMMERS CRK NR ARIEL, WASH.
KALAMA RIVER NEAR KALAMA, WASH
KALAMA RIVER BELOW ITALIAN CR NEAR KALAMA, WASH.
KALAMA RIVER ABV SPENCER CR NEAR KALAMA, WASH.
COLUMBIA RIVER TRIBUTARY AT CARROLLS, WASH.
OHANAPECOSH RIVER NEAR LEWIS, WASH
CLEAR FK COWLITZ RIVER NR PACKWOOD, WASH.
SNOW LAKE NEAR PACKWOOD, WA
BLUE LAKE NEAR PACKWOOD, WA
COAL CR AT MOUTH NR LEWIS, WASH
PACKWOOD LAKE NEAR PACKWOOD, WASH.
LAKE CREEK NEAR PACKWOOD, WASH.
LAKE CREEK AT MOUTH, NEAR PACKWOOD, WASH
COWL ITZ RIVER AT PACKWOOD WASH
SKATE CREEK TRIBUTARY NEAR PACKWOOD, WASH. SKATE CREEK TRIB NO. 2 NEAR PACKWOOD, WASH HAGER CREEK NEAR LEWIS, WA
NORTH FORK HAGER CREEK NEAR LEWIS, WA
HALL CR NR PACKWOOD, WASH
JOHNSON CREEK BLW WEST FORK, NEAR LEWIS, WASH
JOHNSON CR BL GLACIER CR NR PACKWOOD, WASH.
JOHNSON CREEK NEAR PACKWOOD, WASH.
SILVER CREEK NEAR RANDLE, WA
COWLITZ RIVER AT RANDLE, WA
MILLER C AT RANDLE, WASH.
COWLITZ R ABOVE CISPUS R NEAR RANDLE, WASH.
WALUPT LAKE NR PACKWOOD, WASH
CHAMBERS CR NR PACKWOOD, WASH
CISPUS RIVER ABOVE YELLOWJACKET CR NR RANDLE, WA
YELLOWJACKET CREEK NEAR RANDLE, WA
QUARTZ CR NR COSMOS, WASH
CISPUS RIVER NEAR RANDLE, WASH.
TOWER ROCK SPRINGS NEAR RANDLE, WA
CISPUS R BELOW WOODS CR NEAR RANDLE, WASH
QUARTZ CREEK NR KOSMOS, WASH.
COWLITZ RIVER NR RANDLE, WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
454853	1223526	17080002	--
455129	1224215	17080002	0.53
460820	1221925	17080003	--
460113	1225130	17080003	254000
460733	1221957	17080003	12.3
460822	1222030	17080003	8.21
460717	1221934	17080003	3.29
460443	1221852	17080003	--
460637	1222123	17080003	--
460625	1222133	17080003	37.4
460203	1223916	17080003	--
460102	1224352	17080003	179
460210	1225120	17080003	198
460250	1225011	17080003	202
460420	1225140	17080003	1.06
464030	1213510	17080004	101
464050	1213430	17080004	56.5
464527	1214149	17080005	--
464418	1214036	17080004	--
463830	1213640	17080004	10.5
463547	1213407	17080004	19.2
463547	1213408	17080004	19.2
463748	1213812	17080004	26.5
463647	1214041	17080004	287
464210	1214830	17080004	1.22
464030	1214510	17080004	1.82
463500	1213900	17080004	3.81
463520	1213840	17080004	1.45
463450	1214110	17080004	10.9
463150	1213700	17080003	33.3
463230	1213715	17080004	42.8
463430	1214200	17080004	50
463230	1215500	17080004	51.1
463157	1215720	17080004	541
463210	1215720	17080004	2.29
462747	1220522	17080005	--
462515	1212817	17080004	13.7
462455	1213245	17080004	5.25
462638	1215028	17080004	250
462545	1215000	17080004	66.3
462150	1220315	17080002	1.48
462650	1215146	17080004	321
462645	1215200	17080004	--
462628	1220140	17080004	400
462150	1220315	17080005	1.48
462813	1220551	17080004	1030

Site - ID
14233490 14233500 14234000 14234500 14234800 14234805 14234810 14235000 14235300 14235500 14235700 14235900 14236000 14240351 14240352 4240360 14240370 14240400 4240440 14240445 14240446 14240447 14240450 14240460 14240466 14240467 14240490 14240500 14240520 4240525 14240580 14240600 14240700 14240800 14241000 14241100 14241101 14241200 14241460 14241465 14241490 14241495 14241500 14242000 14242450 14242500

Station Name

LAKE SCANEWA NEAR KOSMOS, WA
COWLITZ RIVER NEAR KOSMOS, WA
RAINY CR NR KOSMOS, WASH
LANDERS CREEK NEAR KOSMOS, WA
RIFFE LAKE NEAR MOSSYROCK WASH
MOSSYROCK POWER PLANT TAILWATER NR MOSSYROCK, WA COWLITZ RIVER BELOW MOSSYROCK DAM, WASH.
COWLITZ RIVER AT MOSSYROCK, WASH.
TILTON RIVER NEAR MINERAL, WASH.
WEST FORK TILTON RIVER NEAR MORTON, WASH.
E.F. TILTON R NR MORTON, WASH

TILTON R NR MORTON, WASH.
TILTON RIVER AT MORTON, WA
COLDWATER LAKE (SO. SIDE) NR SPIRIT LK, WASH
COLDWATER LAKE CANAL NR SPIRIT LK, WASH
NORTH FORK TOUTLE RIVER NEAR ELK ROCK NF TOUTLE R BLW MARATTA CR NR SPIRIT LK, WASH. N. F. TOUTLE RIVER ABV. BEAR CR. NR. KID VALLEY,WA CASTLE CREEK ABV CASTLE LAKE NR SPIRIT LAKE, WA SOUTH FORK CASTLE LAKE DEBRIS DAM
CASTLE LAKE NEAR MOUNT ST. HELENS, WA SO. FK. CASTLE CR LK WEST NR SPIRIT LK, WASH. ELK CR NR SPIRIT LAKE, WASH.
NF TOUTLE R BELOW ELK CR NR SPIRIT LAKE, WASH N F TOUTLE R NR CAMP BAKER (NORTH CHANNEL), WA. N F TOUTLE R NR CAMP BAKER (SOUTH CHANNEL), WA. N F TOUTLE R ABV ALDER CR NR KID VALLEY, WA N F TOUTLE R AT ST HELENS, WASH N F TOUTLE RIVER ABOVE SRS NEAR KID VALLEY, WASH NORTH FORK TOUTLE RIVER BL SRS NR KID VALLEY, WA RYAN LAKE NEAR SPIRIT LAKE, WASH
VENUS LAKE NR SPIRIT LAKE, WASH.
FAWN LAKE NR SPIRIT LAKE, WASH
GREEN R ABV BEAVER CR NEAR KID VALLEY, WASH. GREEN R NR TOUTLE, WASH
N.F. TOUTLE RIVER AT KID VALLEY, WASH N. FORK TOUTLE RIVER AT CABLEWAY NR KID VALLEY, WA COLDSPRING CREEK NEAR COUGAR, WASH.
SF TOUTLE R BLW DISAPPNTMENT CR NR SPIRIT LK, WA S F TOUTLE R ABV HERRINGTON CR NR SPTTD BUCK MTN S F TOUTLE R AT CAMP 12 NR TOUTLE, WASH S F TOUTLE R AT RR BRIDGE NEAR TOUTLE, WASH SOUTH FORK TOUTLE RIVER AT TOUTLE, WASH SILVER LAKE AT SILVER LAKE, WASH. TOUTLE R AT COAL BANK BR NR SILVER LK,WASH. TOUTLE RIVER NEAR SILVER LAKE, WASH.

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Drainage Area (Miles2)
462800	1220628	17080005	1040
462759	1220628	17080005	1040
463030	1220915	17080005	17.9
462730	1221415	17080005	9.61
463207	1222525	17080005	1150
463207	1222528	17080005	--
463207	1222526	17080005	1150
463301	1222931	17080005	1160
463940	1221155	17110015	0.79
463640	1221436	17080005	16.4
463520	1221430	17080005	--
463420	1221540	17080005	--
463330	1221700	17080005	70.2
461716	1221535	17080005	--
461730	1221550	17080005	--
461535	1221530	17080005	--
461703	1221808	17080005	--
461621	1222054	--	--
461512	1221542	17080005	--
461532	1221640	17080005	--
461531	1221627	17080005	--
461531	1221628	17080005	--
461651	1222025	17080005	3.27
461640	1222119	17080005	--
461717	1222245	17080005	--
461710	1222245	17080005	--
461946	1223048	17080005	--
462040	1223200	17080005	124
462142	1223243	17080005	--
462219	1223440	17080005	175
462116	1220352	17080005	--
462035	1220904	17080005	--
461927	1221521	17080005	--
462255	1223121	17080005	129
462230	1223350	17080005	131
462155	1223740	17080005	284
462152	1223741	17080005	284
461038	1221725	17080005	5.47
461244	1221941	17080005	--
461340	1222340	17080005	--
461905	1224001	17080005	117
461925	1224035	17080005	118
461920	1224145	17080005	120
461746	1224827	17080005	41.5
461953	1224330	17080005	--
462011	1224327	17080005	474

Site - ID
14242511
14242512
14242513 14242580 14242592 14242595 14242600
14242690 14242700 14243000 14243500
14244000
14244200
14244500 14244600 14245000 14245100
14245300
14245400
14245410
14245420
14245500
14246000
14246500
14247500
14248000
14248100
14248200
14249000
14249500 14250000 14250500 14250900 14251000 14270000

Station Name

STORAGE IN CFS IN LAKES AFTER ERUPTION,ESTIMATES TOUTLE ADJUSTED FOR R-R STUDY STORAGE-NOT GOOD!! FAKE TOUTLE R. RECORD DONT YOUS'S USE TOUTLE RIVER AT TOWER ROAD NR SILVER LAKE, WASH. CLINE CK. AT WILKES HILLS NR. SILVER LAKE
CLINE CK. NR. MOUTH NR. SILVER LAKE
TOUTLE R TRIBUTARY NR CASTLE ROCK, WASH. TOUTLE R AT HIWAY 99 BRIDGE NR CASTLE ROCK, WA. TOUTLE R NR CASTLE ROCK, WASH COWLITZ RIVER AT CASTLE ROCK, WASH DELAMETER CREEK NEAR CASTLE ROCK, WASH OSTRANDER CREEK NEAR KELSO, WA
COWLITZ RIVER AT KELSO, WASH
COWEMAN RIVER NEAR KELSO, WA
COWEMAN RIVER ABV SAM SMITH CREEK NR KELSO,WASH COWEMAN RIVER NEAR KELSO, WASH.
COWEMAN RIVER AT KELSO, WASH.
COLUMBIA RIVER AT LONGVIEW, WA
COLUMBIA R. AT FISHER ISLAND NR LONGVIEW, WASH.
COAL CK. ABV. EAST FORK COAL CK. NR. LONGVIEW COAL CK. NR. LONGVIEW
GERMANY CREEK NEAR LONGVIEW, WA
ABERNATHY CR NR LONGVIEW, WASH.
MILL CREEK NR CATHLAMET, WA
ELOCHOMAN RIVER NEAR CATHLAMET, WASH.
SKAMOKAWA CREEK NEAR SKAMOKAWA, WA
RISK CREEK NEAR SKAMOKAWA, WASH
JIM CROW CREEK NEAR GRAYS RIVER, WASH.
GRAYS RIVER ABV SOUTH FK NR GRAYS RIVER, WASH.
GRAYS R BLW SOUTH FK NR GRAYS RIVER, WASH.
GRAYS R NR GRAYS RIVER, WASH
WEST FORK GRAYS RIVER NEAR GRAYS RIVER, WASH GRAYS R. NR. GRAYS RIVER
HULL CREEK AT GRAYS RIVER, WA
COLUMBIA RIVER NEAR ILWACO,WASH

Latitude (Degrees)	Longitude (Degrees)	Hydrologic Unit (OWDC)	Area (Miles2)
462012	1224327	--	474
462013	1224327	--	474
462012	1224329	--	474
462002	1225020	17080005	496
462232	1225105	17080005	--
462032	1225122	17080005	--
461925	1225130	17080005	0.64
461910	1225427	17080005	511
461910	1225428	17080005	512
461630	1225448	17080005	2240
461549	1225758	17080005	19.6
461145	1225300	17080003	25.3
460844	1225447	17080005	2350
460740	1225010	17080003	119
461023	1224346	17080005	68.6
460857	1225345	17080005	119
460817	1225347	17080005	--
460622	1225714	17080003	257000
460920	1230320	17080003	--
461350	1230248	17080003	--
461221	1230107	17080003	--
461150	1230735	17080003	22.9
461210	1230915	17080003	20.3
461140	1231125	17080003	27.6
461317	1232028	17080003	65.8
461800	1232630	17080003	17.4
461505	1232350	17080003	1.13
461637	1233337	17080006	5.48
462336	1232839	17080006	39.9
462330	1232835	17080006	60.3
462240	1233150	17080006	60.6
462307	1233330	17080006	15.2
462134	1233355	17080006	--
462120	1233615	17080006	11.9
461600	1240212	17080006	--

Washington State Hydrology
 USGS Regression Equations
 Region 1-61 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

| Q 2yr | $=0.35 \times \mathrm{XA}^{0.923} \times(\mathrm{MAP})^{1.24}$ | $($ Standard Error $=32 \%)$ |
| :--- | :--- | :--- | :--- |
| Q 10yr | $=0.502 \times \mathrm{A}^{0.921} \times(\mathrm{MAP})^{1.26}$ | $($ Standard Error $=33 \%)$ |
| Q 25yr | $=0.59 \mathrm{XA}^{0.921} \times(\mathrm{MAP})^{1.26}$ | $($ Standard Error $=34 \%)$ |
| Q 50yr | $=0.666 \times \mathrm{A}^{0.921} \times(\mathrm{MAP})^{1.26}$ | $($ Standard Error $=36 \%)$ |
| Q 100yr | $=0.745 \times \mathrm{A}^{0.922} \times(\mathrm{MAP})^{1.26}$ | $($ Standard Error $=37 \%)$ |

Legend
$\mathrm{Q}=$ Flow (cfs)
$\mathrm{A}=$ Drainage Basin Area $\left(\right.$ miles $\left.^{2}\right) \quad\left(0.15\right.$ mile s $^{2} \leq \mathrm{A} \leq 1,294$ miles $^{2}{ }^{2}$
$\mathrm{MAP}=$ Mean Annual Precipitation (inches) $\quad(45.0 \mathrm{in}<\mathrm{MAP} \leq 201 \mathrm{in})$

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 1
Figure A2-2.2
(Updated March 2001)

Washington State Hydrology
 USGS Regression Equations
 Region 2 - 202 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$0.090 \times \mathrm{A}^{0.877} \mathrm{X}(\mathrm{MAP})^{1.51}$	$($ Standard Error $=56 \%)$
Q 10yr	$=$	$0.129 \times \mathrm{A}^{0.868} \times(\mathrm{MAP})^{1.57}$	$($ Standard Error $=53 \%$)
Q 25yr	$=$	$0.148 \times \mathrm{A}^{0.864} \mathrm{X}(\mathrm{MAP})^{1.59}$	$($ Standard Error $=53 \%)$
Q 50yr	$=$	$0.161 \times \mathrm{A}^{0.862} \times(\mathrm{MAP})^{1.61}$	$($ Standard Error $=53 \%$)
Q 100yr	=	$0.174 \times \mathrm{A}^{0.861} \mathrm{X}(\mathrm{MAP})^{1.62}$	$($ Standard Error $=54 \%$)
	Legend		mits
Q	Flow (cfs)		
A	Drainage Basin Area (miles ${ }^{2}$) (0.08)		es s ${ }^{2} \leq \mathrm{A} \leq 3,020$ miles $^{2)}$
MAP ${ }^{=}$	Mean Annual Precipitation (inches)		

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 2
Figure A2-2.3
(Updated March 2001)

Washington State Hydrology

USGS Regression Equations

Region 3-63 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	=	$0.817 \mathrm{XA}^{0.877} \mathrm{X}(\mathrm{MAP})^{1.02}$	$($ Standard Error $=57 \%$)
Q 10yr	$=$	$0.845 \mathrm{X} \mathrm{A}^{0.875} \mathrm{X}(\mathrm{MAP})^{1.14}$	$($ Standard Error $=55 \%$)
Q 25yr	$=$	$0.912 \times \mathrm{A}^{0.874} \mathrm{X}(\mathrm{MAP})^{1.17}$	$($ Standard Error $=54 \%$)
Q 50yr	$=$	$0.808 \times \mathrm{A}^{0.872} \mathrm{X}(\mathrm{MAP})^{1.23}$	$($ Standard Error $=54 \%$)
Q 100yr		$0.801 \mathrm{X} \mathrm{A}^{0.871} \mathrm{X}(\mathrm{MAP})^{1.26}$	$($ Standard Error $=55 \%$)
	Legend		mits
Q	Flow (cfs)		
A	Drainage Basin Area (miles ${ }^{2}$)		(0.36 mile $^{2} \leq \mathrm{A} \leq 2,198$ miles 2)
MAP ${ }^{=}$	Mean Annual Precipitation (inches) (42		(42 in $<$ MAP ≤ 132 in)

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 3
Figure A2-2.4
(Updated March 2001)

Washington State Hydrology
 USGS Regression Equations
 Region 4-60 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$0.025 \mathrm{X} \mathrm{A}^{0.880} \mathrm{X}(\mathrm{MAP})^{1.70}$	(Standard Error $=82 \%$)
Q 10yr	$=$	$0.179 \times \mathrm{A}^{0.856} \times(\mathrm{MAP})^{1.37}$	$($ Standard Error $=84 \%$)
Q 25yr	$=$	$0.341 \times \mathrm{A}^{0.85} \times(\mathrm{MAP})^{1.26}$	$($ Standard Error $=87 \%$)
Q 50yr	$=$	$0.505 \mathrm{X} \mathrm{A}^{0.845} \mathrm{X}(\mathrm{MAP})^{1.20}$	$($ Standard Error $=90 \%$)
Q 100yr	$=$	$0.703 \mathrm{X} \mathrm{A}^{0.842} \mathrm{X}(\mathrm{MAP})^{1.15}$	(Standard Error = 92\%)
	Legend		mits
Q	Flow (cfs)		
A	Drainage Basin Area (miles ${ }^{2}$)		(0.66 mile s ${ }^{2} \leq \mathrm{A} \leq 2,220$ miles 2)
MAP $=$	Mean Annual Precipitation (inches) (12		(12 in $<$ MAP ≤ 108 in)

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 4
Figure A2-2.5
(Updated March 2001)

Washington State Hydrology
 USGS Regression Equations
 Region 5-19 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$14.7 \times \mathrm{A}^{0.815}$	$($ Standard Error $=96 \%$)
Q 10yr	$=$	$35.2 \times \mathrm{A}^{0.787}$	$($ Standard Error $=63 \%$)
Q 25yr	=	$48.2 \times \mathrm{A}^{0.779}$	$($ Standard Error $=56 \%$)
Q 50yr	$=$	$59.1 \times \mathrm{A}^{0.774}$	$($ Standard Error $=53 \%$)
Q 100yr	=	$71.2 \times{ }^{0.769}$	$($ Standard Error $=52 \%$)
	Legend		Limits
$\mathrm{Q}=$	Flow (cfs)		
$\mathrm{A}=$	Drainage B	in Area (miles ${ }^{2}$)	(0.38 mile $^{2} \leq \mathrm{A} \leq 638$ miles 2)

Description of Area	Return Frequency	A	Q

USGS Regression Equations - Region 5
Figure A2-2.6
(Updated March 2001)

Washington State Hydrology
 USGS Regression Equations
 Region 6-23 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$2.24 \times \mathrm{A}^{0.719} \mathrm{X}(\mathrm{MAP})^{0.833}$	(Standard Error = 63\%)
Q 10yr	$=$	$17.8 \times \mathrm{A}^{0.716} \mathrm{X}(\mathrm{MAP})^{0.487}$	$($ Standard Error $=69 \%$)
Q 25yr	$=$	$38.6 \times \mathrm{A}^{0.714} \mathrm{X}(\mathrm{MAP})^{0.359}$	(Standard Error $=72 \%$)
Q 50yr	$=$	$63.6 \times \mathrm{A}^{0.713} \mathrm{X}(\mathrm{MAP})^{0.276}$	$($ Standard Error $=74 \%$)
Q 100yr	$=$	$100 \times \mathrm{A}^{0.713} \mathrm{X}(\mathrm{MAP})^{0.201}$	$($ Standard Error $=77 \%$)
			mits

$\mathrm{Q}=$ Flow (cfs)
$\mathrm{A}=$ Drainage Basin Area $\left(\right.$ miles $\left.^{2}\right) \quad\left(0.50\right.$ mile s $^{2} \leq \mathrm{A} \leq 1,297$ miles $\left.^{2}\right)$
MAP ${ }^{=} \quad$ Mean Annual Precipitation (inches) $\quad(10$ in $\leq M A P \leq 116$ in)

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 6
Figure A2-2.7
(Updated March 2001)

Washington State Hydrology
 USGS Regression Equations

Region 7-17 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$8.77 \times \mathrm{A}^{0.629}$	$($ Standard Error $=128 \%)$
Q 10yr	$=$	$50.9 \times \mathrm{A}^{0.587}$	(Standard Error $=63 \%$)
Q 25yr	=	$91.6 \times \mathrm{A}^{0.574}$	$($ Standard Error $=54 \%$)
Q 50yr	=	$131 \times \mathrm{A}^{0.566}$	$($ Standard Error $=53 \%$)
Q 100yr	$=$	$179 \times \mathrm{A}^{0.558}$	$($ Standard Error $=56 \%$)
	Legend		$\underline{\text { Limits }}$
$\mathrm{Q}=$	Flow (cfs)		
$\mathrm{A}=$	Drainage B	in $\operatorname{Area}\left(\right.$ miles ${ }^{2}$)	

Description of Area	Return Frequency	A	Q

USGS Regression Equations - Region 7
Figure A2-2.8
(Updated March 2001)

Washington State Hydrology

USGS Regression Equations

Region 8 - 23 stations

SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:

Q 2yr	$=$	$12.0 \times \mathrm{A}^{0.761}$	$($ Standard Error $=133 \%)$
Q 10yr	=	$32.6 \mathrm{XA}^{0.706}$	(Standard Error $=111 \%$)
Q 25yr	$=$	$46.2 \times \mathrm{A}^{0.687}$	(Standard Error $=114 \%$)
Q 50yr	$=$	$57.3 \times \mathrm{A}^{0.676}$	(Standard Error $=119 \%$)
Q 100yr	=	$69.4 \mathrm{XA}^{0.666}$	(Standard Error $=126 \%$)
	Legend		Limits
$\mathrm{Q}=$	Flow (cfs)		
$\mathrm{A}=$	Drainage B	in Area (miles ${ }^{2}$)	(0.59 mile $\mathrm{s}^{2} \leq \mathrm{A} \leq 689 \mathrm{miles}^{2}$

Description of Area	Return Frequency	A	Q

USGS Regression Equations - Region 8

Figure A2-2.9
(Updated March 2001)

Washington State Hydrology

USGS Regression Equations
Region 9-36 stations
SR \qquad Date \qquad
Project \qquad
Made By \qquad
Equations:
Q 2yr $\quad=\quad 0.803 \times$ A $^{0.672} \times(\mathrm{MAP})^{1.16} \quad($ Standard Error $=80 \%)$
Q 10yr $\quad=\quad 15.4 \times$ A $^{0.597} \times(\mathrm{MAP})^{0.662} \quad($ Standard Error $=57 \%)$
Q 25yr $\quad=\quad 41.1 \times$ A $^{0.570} \times(\mathrm{MAP})^{0.508} \quad($ Standard Error $=55 \%)$
Q 50yr $\quad=\quad 74.7 \times$ A $^{0.553} \times(\mathrm{MAP})^{0.420} \quad($ Standard Error $=55 \%)$
Q $100 \mathrm{yr} \quad=\quad 126 \times \mathrm{A}^{0.538} \times(\mathrm{MAP})^{.344} \quad($ Standard Error $=56 \%)$
Legend
$\underline{\text { Limits }}$
$\mathrm{Q}=$ Flow (cfs)
$\mathrm{A}=$ Drainage Basin Area $\left(\right.$ miles $\left.^{2}\right) \quad\left(0.54\right.$ mile s $^{2} \leq \mathrm{A} \leq 2,500$ miles $^{2)}$
$\mathrm{MAP}=$ Mean Annual Precipitation (inches) $\quad(12.0$ in $<\mathrm{MAP} \leq 40.0)$

Description of Area	Return Frequency	A	MAP	Q

USGS Regression Equations - Region 9
Figure A2-2.10
(Updated March 2001)

The 24-hour and 2-hour Isopluvial maps and the Mean Annual Precipitation maps for Washington are available in pdf format through the links below or by using ArcMap. Contact your local GIS group for how to extract precipitation data using ArcMap.

Washington 2-hour Isopluvial Maps
Washington 24-hour Isopluvial Maps
Washington Mean Annual Precipitation Map

Contents

Chapter 3 Culvert Design 1
3-1 Overview 1
3-1.1 Metric Units and English Units 1
3-2 Culvert Design Documentation 2
3-2.1 Common Culvert Shapes and Terminology 2
3-2.2 Hydraulic Reports 3
3-2.3 Required Field Data 3
3-2.4 Engineering Analysis 5
3-3 Hydraulic Design of Culverts 7
3-3.1 Culvert Design Flows 8
3-3.1.1 Precast Reinforced Concrete Three Sided Structure 9
3-3.1.2 Additional Requirement for Culverts over 20' 10
3-3.1.3 Alignment and Grade 10
3-3.1.4 Allowable Grade 10
3-3.1.5 Minimum Spacing 11
3-3.1.6 Culvert Extension 11
3-3.1.1 Temporary Culverts 12
3-3.2 Allowable Headwater 12
3-3.2.1 General 12
3-3.2.2 Allowable Headwater for Circular and Box Culverts and Pipe Arches 13
3-3.2.3 Allowable Headwater for Bottomless Culverts 15
3-3.3 Tailwater Conditions 15
3.3.4 Flow Control 16
3-3.4.1 Culverts Flowing With Inlet Control 16
3-3.4.2 Calculating Headwater for Inlet Control 17
3-3.4.4 Calculating Headwater For Outlet Control 26
3-3.4.5. Outlet Control Nomographs 28
3-3.5 Velocities in Culverts - General. 42
3-3.5.1 Calculating Outlet Velocities for Culverts in Inlet Control 43
3-3.5.2 Calculating Outlet Velocities for Culverts in Outlet Control 44
3-3.5.2.1 Example - Calculating Outlet Velocities for Culverts in Outlet Control 46
3-3.6 Culvert Hydraulic Calculations Form. 50
3-3.7 Computer Programs 55
3-3.8 Example 56
3-4 Culvert End Treatments 61
3-4.1 Projecting Ends 61
3-4.2 Beveled End Sections 62
3-4.3 Flared End Sections 63
3-4.4 Headwalls and Slope Collars 64
3-4.5 Wingwalls and Aprons 65
3-4.6 Improved Inlets 66
3-4.7 Energy Dissipators 67
3-4.8 Culvert Debris 68
3-5 Miscellaneous Culvert Design Considerations. 72
3-5.1 Multiple Culvert Openings 72
3-5.2 Camber 73
3-5.5 Angle Points 73
3-5.6 Upstream Ponding 74
3-5.7 Misc Design Considerations - Siphons 75

3-1 Overview

A culvert is a closed conduit under a roadway or embankment used to maintain flow from a natural channel or drainage ditch. A culvert should convey flow without causing damaging backwater, excessive flow constriction, or excessive outlet velocities.

In addition to determining the design flows and corresponding hydraulic performance of a particular culvert, other factors can affect the ultimate design of a culvert and should be taken into consideration. These factors can include the economy of alternative pipe materials and sizes, horizontal and vertical alignment, environmental concerns, and necessary culvert end treatments.

In some situations, the hydraulic capacity may not be the only consideration for determining the size of a culvert opening. Fish passage requirements often dictate a different type of crossing than would normally be used for hydraulic capacity. Wetland preservation may require upsizing a culvert or replacement of a culvert with a bridge. Excessive debris potential may also require an increase in culvert size. In these cases, the designer should seek input from the proper authorities and document this input in the Hydraulic Report in order to justify the larger design.

3-1.1 Metric Units and English Units

When this manual was revised in 1997, WSDOT was in the process of converting to metric units. The 1997 revision included dual units throughout this chapter (and manual) except on charts and graphs. A supplement to this manual was planned that would include Metric charts and graphs, however WSDOT converted back to English units before the supplement was completed. Dual units have been left in this manual to accommodate any redesigns on metric projects. In the event a design requires metric units, it is recommended that the designer complete the form in English units and convert the discharges, controlling HW elevation, and velocity to metric units. All equations related to the charts and graphs are shown in English units only. Elsewhere in the chapter, dual units are provided.

3-2 Culvert Design Documentation

3-2.1 Common Culvert Shapes and Terminology

Circular Culvert

Pipe Arch

Box Culvert

Bottomless Arch

3-Sided Box

Common Culvert Shapes and Terminology
Figure 3-2.1

3-2.2 Hydraulic Reports

Culverts 48 inch (1200 mm) or less in diameter or span will be included as part of a Type B Hydraulic Report and will be reviewed by the Region Hydraulics Office/Contact as outlined in Chapter 1. The designer shall collect field data and perform an engineering analysis as described in Sections 3-2.3 and 3-2.4. Culverts in this size range should be referred to on the contract plan sheets as "Schedule \qquad Culv. Pipe ___ in (mm) Diam.". The designer is responsible for listing all acceptable pipe alternates based on site conditions. The decision regarding which type of pipe material to be installed at a location will be left to the contractor. See Chapter 8 for a discussion on schedule pipe and acceptable alternates.

Culverts larger than 48 inch (1200 mm) in diameter or span will be included as part of a Type A Hydraulic Report and will be reviewed by both the Regional Hydraulics Office/Contact and the Headquarters (HQ) Hydraulics Office as outlined in Chapter 1. The designer shall collect field data and perform an engineering analysis as described in Sections 3-2.3 and 3-2.4.

If it is determined that a bottomless arch or three-sided box structure is required at a location, the HQ Hydraulics Office is available to provide assistance in the design. The level of assistance provided by the HQ Hydraulics Office can range from full hydraulic and structural design to review of the completed design. If a project office requests the HQ Hydraulics Office to complete a design, the project office shall submit field data as described in Section 3-2.3. The engineering analysis and footing structural design will be completed by the HQ Hydraulics Office, generally within four to six weeks after receiving field data. Once completed, the design will be returned to the project office and included as part of the Type A Hydraulic Report. In addition to standard culvert design, the HQ Hydraulics Office is also available to provide assistance in the design of any unique culvert installation. The requirements for these structures will vary, and it is recommended that the HQ Hydraulics Office be contacted early in the design phase to determine what information will be necessary to complete the engineering analysis.

3-2.3 Required Field Data

Information and field data required to complete an engineering analysis for all new culvert installations or draining an area requiring a culvert, should be part of the Type A Hydraulics Report and include the items that follow. Type B reports are further discussed at the end of this section.

1. Topographic map showing contours and the outline of the drainage area.
2. Description of the ground cover of the drainage area.
3. Streambed description and gradation at the proposed site.
4. Soils investigation per Section 510.03(1) of the Design Manual.
5. Streambed alignment and profile extending twice the diameter at the proposed site. The distance will vary on size of the culvert and location, if the culvert is 48 inches use 2 times the diameter for the distance in feet. For example, a 48 inch culvert would require $48 \times 2=96 \mathrm{ft}$ upstream and downstream for a total of 192 ft plus the culvert length for the stream profile.
6. Cross-sections of the stream width extending beyond the limits of the floodplain on each side.
7. Proposed roadway profile and alignment in the vicinity of the culvert.
8. Proposed roadway cross-section at the culvert.
9. Corrosion zone location, pH , and resistivity of the site.
10. Historical information at the site from Maintenance or the locals.
11. Fish passage requirements, if applicable.
12. Any other unique features that can affect design, such as low-lying structures that could be affected by excessive headwater or other consideration discussed in Section 3-5.

Information and field data required to complete an engineering analysis for a Type B Hydraulic Report does not require the same level of information as a Type A Report. If an existing culvert(s) does not have a history of problems, and it only needs to be extended or replaced, it is not necessary to gather all the information to find out the existing culvert's capacity to adequately handle the flows. Therefore, attaining the history of problems at an existing culvert site, would warrant a more detailed review. If the Type B Hydraulic Report has new culverts sites, those will need to follow the Type A guidance. The following Table 3-2.3 is a general outline showing the information and field data requirements for either a Type A or Type B report.

Information and Field Data	Type A\&B New Sites	Type B Extending or Replacing
1. Topographic survey	R	O
2. Ground cover description	R	O
3. Stream descriptions \& investigation	R	O
4. Ground soil investigation	R	O
5. Streambed profile \& alignment	R	O
6. Streambed cross section	R	O
7. Proposed roadway profile \& alignment	R	O
8. Proposed roadway cross section	R	O
9. Corrosion Zone, pH , resistivity	R^{1}	O^{1}
10. Historical information	R	R
11. Fish passage	R	O
12. Unique features	R	O

1. Only required if replacing with dissimilar material.

R=REQUIRED, O=OPTION UNLESS NEW CULVERT
Field Data Requirements for Type A or B Hydraulic Reports
Figure 3-2.3

3-2.4 Engineering Analysis

Collected field data will be used to perform an engineering analysis. The intent of the engineering analysis is to insure that the designer considers a number of issues, including flow capacity requirements, foundation conditions, embankment construction, run-off conditions, soil characteristics, stream characteristics, construction problems that may occur, estimated cost, environmental concerns, and any other factors that may be involved and pertinent to the design. An additional analysis may be required, if a culvert is installed for flood equalization, to verify that the difference between the floodwater levels is less than 1' on either side of the culvert. Designers should contact the HQ Hydraulics Office for further guidance on flood equalization. Other miscellaneous design considerations for culverts are discussed in Section 3-5.

Once the engineering analysis is completed, it will be part of the Hydraulic Report and shall include:

1. Culvert hydraulic and hydrology calculations as described in Section 3-3. Approved modeling software, such as HY-8 can also be in lieu of hand calculations. If the designers wish to use different software, HQ approval is required prior to submitting final designs.
2. Proposed roadway stationing of the culvert location.
3. Culvert and stream profile per the distance in Section 3-2.3
4. Culvert length and size. The minimum diameter of culvert pipes under a main roadway shall be 18 inches. Culvert pipe under roadway approaches shall have a minimum diameter of 12 inches.
5. Culvert material (for culverts larger than 48 inch (1200 mm) (with appropriate n values from Appendix 4-1)
6. Headwater depths, water surface elevations (WSEL) and flow rates (Q) for the design flow event (generally the 25 -year event and the 100 -year flow event), should appear on the plan sheets for future record.
7. Proposed roadway cross-section and roadway profile, demonstrating the maximum and minimum height of fill over the culvert.
8. Appropriate end treatment as described in Section 3-4.
9. Hydraulic features of downstream controls, tailwater or backwater (storage) conditions.

Information to complete an engineering analysis for a Type B Hydraulic Report does not require the same depth of information as a Type A Report. This is true with existing culverts that only need to be extended or replaced as stated in the field data section. If the Type B Hydraulic Report has new culvert sites, those will need to follow the Type A guidance. The following Figure 3-2.4 is a general outline showing the information required for an engineering analysis for either a Type A or Type B report.

Engineering Analysis Items	Type A\&B New Sites	Type B Extending $\frac{\text { or }}{\text { Replacing }}$
1. Culvert hydraulic \& hydrology calculations	R O	
2. Roadway stationing at culvert	R	R
3. Culvert \& Stream profile	R	O
4. Culvert length \& size	R	R
5. Culvert material	R	R
6. Hydraulic details	R	O
7. Proposed roadway details	R	O
8. End treatment	R	R
9. Hydraulic features	R	O
R=REQUIRED, O=OPTION UNLESS NEW CULVERT		

Information Required for Type A or B Hydraulics Report

Figure 3-2.4

3-3 Hydraulic Design of Culverts

A complete theoretical analysis of the hydraulics of a particular culvert installation is time-consuming and complex. Flow conditions vary from culvert to culvert and can also vary over time for any given culvert. The barrel of the culvert may flow full or partially full depending upon upstream and downstream conditions, barrel characteristics, and inlet geometry. However, under most conditions, a simplified procedure can be used to determine the type of flow control and corresponding headwater elevation that exist at a culvert during the chosen design flow.

This section includes excerpts from the Federal Highway Administration’s Hydraulic Design Series No. 5 - Hydraulic Design of Highway Culverts (HDS 5). The designer should refer to this manual for detailed information on the theory of culvert flow or reference an appropriate hydraulics textbook for unusual situations. The HQ Hydraulics Office is also available to provide design guidance.

The general procedure to follow when designing a culvert, for a span width less than 20 ft , is summarized in the steps below. Culvert spans over 20 ft are considered
bridges and any hydraulic design for bridges is the responsibility of HQ Hydraulics, see section 3-3.1.2 for further guidance.

1. Calculate the culvert design flows (Section 3-3.1).
2. Determine the allowable headwater elevation (Section 3-3.2).
3. Determine the tailwater elevation at the design flow (Section 3-3.3).
4. Determine the type of control that exists at the design flow(s), either inlet control or outlet control (Section 3-3.4).
5. Calculate outlet velocities (Section 3-3.5).

3-3.1 Culvert Design Flows

The first step in designing a culvert is to determine the design flows to be used. The flow from the basin contributing to the culvert can be calculated using the methods described in Chapter 2. Generally, culverts will be designed to meet criteria for two flows: the 25-year event and the 100-year event. If fish passage is a requirement at a culvert location, an additional flow event must also be evaluated for the hydraulic option, the 10 percent exceedence flow (see Chapter 7). Guidelines for temporary culverts are described further below. The designer will be required to analyze each culvert at each of the design flows, insuring that the appropriate criteria are met.

For Circular Pipe, Box Culverts, and Pipe Arches

Q10\%: If a stream has been determined to be fish bearing by either Region Environmental staff or Washington Department of Fish and Wildlife (WDFW) personnel and the hydraulic option is selected, the velocity occurring in the culvert barrel during the 10 percent exceedence flow must meet the requirements of Chapter 7 .

Q25: The 25-year flow event should not exceed the allowable headwater, which is generally taken as 1.25 times the culvert diameter or rise as described in Section 3-3.2.2. Additionally, the WSEL for the 25-year event should not exceed the elevation of the base course of the roadway (else the base course could be saturated).

Q100: It is recommended that the culvert be sized such that there is no roadway overtopping during the 100-year flow event. See Section 3-3.2.2 for more discussion on this topic.

For Concrete or Metal Bottomless Culverts

Q10\%: If a stream has been determined to be fish bearing by either Region Environmental staff or WDFW personnel and the hydraulic option is selected, the velocity occurring during the 10% exceedance flow through the arch must meet the requirements of Chapter 7.

Q25: $\quad 1$ foot (0.3 meters) of debris clearance should be provided between the water surface and the top of the arch during the 25 -year flow event, as shown in Figure 3.3.1 and discussed in Section 3-3.2.3. Additionally, the WSEL for the 25 -year event should not exceed the elevation of the base course of the roadway (else the base course could be saturated).

Q100: The depth of flow during the 100 -year flow event should not exceed the height of the arch as described in Section 3-3.2.3.

Typical Bottomless Culvert
Figure 3-3.1

3-3.1.1 Precast Reinforced Concrete Three Sided Structure

When selecting a precast reinforced concrete three-sided structure for the site the following criteria must be determined:

- Span - For a three-sided structure the maximum span is 26 ft .
- Cover - A minimum of 2 feet of cover (measured from the bottom of pavement to the top of the culvert) is required when the current ADT is 5000 or greater. For cover less than 2', see Chapter 8 Shallow Cover Installations.
- Footing Slope - The footing slope cannot be greater than 4% in the direction parallel to the channel.

3-3.1.2 Additional Requirement for Culverts over 20'

Once a culvert exceeds a 20^{\prime} width, it is defined as a bridge and all hydraulic analysis on bridges are the responsibility of the HQ Hydraulics Office (see Chapter 1 Section 1-2). The federal definition of a bridge is a structure, including supports, erected over a depression or obstruction, such as water, highway, or railway, and having a track or passage way for carrying traffic or other moving loads with a clear span as measured along the center line of the roadway equal to or greater than 20^{\prime}. The interior cell walls of a multiple box are ignored as well as the distance between the multiple pipes if the distance between pipes is less than $\mathrm{D} / 2$ (i.e. a 16 ' culvert on a 45 degree skew is a bridge, a 10' culvert on a 60 degree skew is a bridge, three 6' pipes two feet apart is a bridge).

The two primary types of hydraulic analysis performed on bridges are backwater and scour. As noted above all hydraulic analysis of bridges is performed by HQ Hydraulics however it is the responsibility of the Project Office to gather field information for the analysis. Chapter 4 Sections 4-5 and 4-6.3.3 contain more information about backwater and scour analysis, along with the PEO list of responsibilities.

3-3.1.3 Alignment and Grade

It is recommended that culverts be placed on the same alignment and grade as the natural streambed, especially on year-round streams. This tends to maintain the natural drainage system and minimize downstream impacts.

In many instances, it may not be possible or feasible to match the existing grade and alignment. This is especially true in situations where culverts are conveying only hillside runoff or streams with intermittent flow. If following the natural drainage course results in skewed culverts, culverts with horizontal or vertical bends, or requires excessive and/or solid rock excavation, it may be more feasible to alter the culvert profile or change the channel alignment up or downstream of the culvert. This is best evaluated on a case-by-case basis, with potential environmental and stream stability impacts being balanced with construction and function ability issues.

3-3.1.4 Allowable Grade

Concrete pipe may be used on any grade up to 10 percent. Corrugated metal pipe and thermoplastic pipe may be used on up to 20 percent grades. For grades over 20 percent, consult with the Region Hydraulics Engineer or the HQ Hydraulics Office for design assistance.

3-3.1.5 Minimum Spacing

When multiple lines of pipe or pipe-arch greater than 48 inches in diameter or span are used, they should be spaced so that the sides of the pipe are no closer than onehalf a diameter or 3 feet, which ever is less, so there is space for adequate compaction of the fill material available. For diameters up to 48 inches, the minimum distance between the sides of the pipe should be no less than 2 feet. Utility lines maybe closer, please consult the Region Utilities Office for appropriate guidance.

3-3.1.6 Culvert Extension

Whenever possible culvert extensions should be done in-kind; that is use the same pipe material and size and follow the existing slope. All culvert extension hydraulic reports should follow the guidelines for the culvert sizes noted in section 3-2.2 of Chapter 3 and section 1-3 of Chapter 1. For in-kind extensions, designers should follow the manufacturer's recommendations for joining pipe. For extensions of dissimilar material or box culverts, designers should follow the guidelines below. For situations not listed, contact the Region Hydraulics Engineer or the HQ Hydraulics Office.

- Culvert pipe connections for dissimilar materials must follow standard plan B60.20 of the WSDOT Standard Plans as shown in Figure 3-3.1.5.
- For cast in place box culvert connections; contact Bridge Design Office for rebar size and embedment.
- Precast box culvert connections must follow ASTM C 1433, and ASHTO M 259, M 273 and Standard Specification 6-02.3(28)

Connection for Dissimilar Culvert Pipe
Figure 3-3.1.5

3-3.1.1 Temporary Culverts

Temporary culverts should be sized for the 2-year storm event, unless the designer can justify a different storm event and receive HQ or Region Hydraulics approval. If the designer should decide to challenge the 2 year storm event, the designer should consider the following: the number of seasons during construction, the construction window, historical rainfall data for at least 10 years (both annually and monthly) and factor in any previous construction experience at the site.

1. Construction Seasons: If the construction season will extend beyond two seasons, the 2 -year storm event or greater should be used to size a temporary culvert. If only one season is involved, proceed to number 2.
2. Construction Window: If construction will occur during one season, the designer should evaluate at least 10 years of rainfall data for that season and then have HQ Hydraulics perform a statistical analysis to determine an appropriate peak rainfall during that season to generate a flow rate for sizing the culvert. If gage data is available for the peak flow rate during the season of construction that should always be used first. The designer should consult the Region Hydraulics Office for further guidance. Steam Flow data can be found at Ohttp://nwis.waterdata.usgs.gov/wa/nwis/dvstst.
3. Previous Experience: Previous experience sizing temporary culverts at a nearby site can be the best way to size the culvert. If for example, the 2 -year event yielded a 36 -inch diameter culvert (assuming the same season), but the culvert was only $6-8$ inches full, a reduction in the culvert size could be justified.

It is recommended that Region Hydraulics be involved at the beginning of this process. The designer should document the steps followed above in the Hydraulics Report.

3-3.2 Allowable Headwater

3-3.2.1 General

The depth of water that exists at the culvert entrance at a given design flow is referred to as the headwater (HW). Headwater depth is measured from the invert of the culvert to the water surface, as shown in Figure 3-3.2.1.

Headwater and Tailwater Diagram

Figure 3-3.2.1
Limiting the amount headwater during a design flow can be beneficial for several reasons. The potential for debris clogging becomes less as the culvert size is increased. Maintenance is virtually impossible to perform on a culvert during a flood event if the inlet is submerged more than a few feet. Also, increasing the allowable headwater can adversely impact upstream property owners by increasing flood elevations. These factors must be taken into consideration and balanced with the cost effectiveness of providing larger or smaller culvert openings.

If a culvert is to be placed in a stream that has been identified in a Federal Emergency Management Agency (FEMA) Flood Insurance Study, the floodway and floodplain requirements for that municipality may govern the allowable amount of headwater. In this situation, it is recommended that the designer contact either the Region Hydraulics Section/Contact or the HQ Hydraulics Office for additional guidance.

3-3.2.2 Allowable Headwater for Circular and Box Culverts and Pipe Arches

Circular culverts, box culverts, and pipe arches should be designed such that the ratio of the headwater (HW) to diameter (D) during the 25-year flow event is less than or equal to $1.25\left(\mathrm{HW}_{\mathrm{i}} / \mathrm{D}<1.25\right) . \mathrm{HW}_{\mathrm{i}} / \mathrm{D}$ ratios larger than 1.25 are permitted, provided that existing site conditions dictate or warrant a larger ratio. An example of this might be an area with high roadway fills, little stream debris, and no impacted upstream property owners. Generally, the maximum allowable $\mathrm{HW}_{\mathrm{i}} / \mathrm{D}$ ratios should not exceed 3 to 5 . The justification for exceeding the $\mathrm{HW}_{\mathrm{i}} / \mathrm{D}$ ratio of 1.25 must be discussed with either the Region Hydraulics Section/Contact or the HQ Hydraulics Office and, if approved, included as a narrative in the corresponding Hydraulics Report.

The headwater that occurs during the 100-year flow event must also be investigated. Two sets of criteria exist for the allowable headwater during the 100-year flow event, depending on the type of roadway over the culvert:

1. If the culvert is under an interstate or major state route that must be kept open during major flood events, the culvert must be designed such that the 100-year flow event can be passed without overtopping the roadway.
2. If the culvert is under a minor state route or other roadway, it is recommended that the culvert be designed such that there is no roadway overtopping during the 100 -year flow event. However, there may be situations where it is more cost effective to design the roadway embankment to withstand overtopping rather than provide a structure or group of structures capable of passing the design flow. An example of this might be a low ADT roadway with minimal vertical clearance that, if closed due to overtopping, would not significantly inconvenience the primary users.

Overtopping, of the road, will begin to occur when the headwater rises to the elevation of the roadway centerline. The flow over the roadway will be similar to flow over a broad-crested weir, as shown in Figure 3-3.2.2. A methodology is available in HDS 5 to calculate the simultaneous flows through the culvert and over the roadway. The designer must keep in mind that the downstream embankment slope must be protected from the erosive forces that will occur. This can generally be accomplished with riprap reinforcement, but the HQ Hydraulics Office should be contacted for further design guidance. Additionally, the designer should verify the adjacent ditch does not overtop and transport runoff causing damage to either the road or private property.

Roadway Overtopping

Figure 3-3.2.2

3-3.2.3 Allowable Headwater for Bottomless Culverts

Bottomless culverts with footings should be designed such that 1 foot (0.3 meters) of debris clearance from the water surface to the culvert crown is provided during the 25 -year flow even, see Figure 3.3.1. In many instances, bottomless culverts function very similarly to bridges. They typically span the main channel and are designed to pass relatively large flows. If a large arch becomes plugged with debris, the potential for significant damage occurring to either the roadway embankment or the culvert increases. Excessive headwater at the inlet can also increase velocities through the culvert and correspondingly increase the scour potential at the footings. Sizing a bottomless culvert to meet the 1 foot (0.3 meter) criteria will alleviate many of these potential problems.

Bottomless culverts should also be designed such that the 100 -year event can be passed without the headwater depth exceeding the height of the culvert. Flow depths greater than the height can cause potential scour problems near the footings.

3-3.3 Tailwater Conditions

The depth of water that exists in the channel downstream of a culvert is referred to as the tailwater (TW) and is shown in Figure 3-3.2.1. Tailwater is important because it can effect the depth of headwater necessary to pass a given design flow. This is especially true for culverts that are flowing in outlet control, as explained in Section 3-3.4. Generally, one of three conditions will exist downstream of the culvert and the tailwater can be determined as described below.

1. If the downstream channel is relatively undefined and depth of flow during the design event is considerably less than the culvert diameter, the tailwater can be ignored. An example of this might be a culvert discharging into a wide, flat area. In this case, the downstream channel will have little or no impact on the culvert discharge capacity or headwater.
2. If the downstream channel is reasonably uniform in cross section, slope, and roughness, the tailwater may effect the culvert discharge capacity or headwater. In this case, the tailwater can be approximated by solving for the normal depth in the channel using Manning's equation as described in Chapter 4.
3. If the tailwater in the downstream channel is established by downstream controls, other means must be used to determine the tailwater elevation. Downstream controls can include such things as natural stream constrictions, downstream obstructions, or backwater from another stream or water body. If it is determined
that a downstream control exists, a method such as a backwater analysis, a study of the stage-discharge relationship of another stream into which the stream in question flows, or the securing of data on reservoir storage elevations or tidal information may be involved in determining the tailwater elevation during the design flow. If a field inspection reveals the likelihood of a downstream control, contact either the Region Hydraulics Section/Contract or the HQ Hydraulics Office for additional guidance.

3.3.4 Flow Control

There are two basic types of flow control. A culvert flows in either inlet control or outlet control.

When a culvert is in Inlet Control, the inlet is controlling the amount of flow that will pass through the culvert. Nothing downstream of the culvert entrance will influence the amount of headwater required to pass the design flow.

When a culvert is in Outlet Control , the outlet conditions or barrel are controlling the amount of flow passing through the culvert. The inlet, barrel, or tailwater characteristics, or some combination of the three, will determine the amount of headwater required to pass the design flow.

There are two different methods used to determine the headwater, one for inlet control and one for outlet control. If the culvert is flowing in inlet control, the headwater depth is calculated using inlet control equations. If the culvert is flowing in outlet control, the headwater depth is calculated using outlet control equations. Often, it is not known whether a culvert is flowing in inlet control or outlet control before a design has been completed. It is therefore necessary to calculate the headwater that will be produced for both inlet and outlet control, and then compare the results. The larger headwater will be the one that controls and that headwater will be the one that will be used in the design of the culvert. Both inlet control and outlet control will be discussed in the following sections and methods for determining the headwater for both types of control will be given.

3-3.4.1 Culverts Flowing With Inlet Control

In inlet control, the flow capacity of a culvert is controlled at the entrance by depth of headwater and the entrance geometry. The entrance geometry includes the inlet area, shape, and type of inlet edge. Changing one of these parameters, such as increasing the diameter of the culvert or using a hydraulically more efficient opening, is the only way to increase the flow capacity through the culvert for a given headwater.

Changing parameters downstream of the entrance, such as modifying the culvert slope, barrel roughness, or length will not increase the flow capacity through the culvert for a given headwater.

Inlet control usually occurs when culverts are placed on slopes steeper than a 1 percent grade and when there is minimal tailwater present at the outlet end. Figure 33.4.1 shows a typical inlet control flow profile. In the figure, the inlet end is submerged, the outlet end flows freely, and the barrel flows partly full over its length. The flow passes through critical depth $\left(\mathrm{d}_{\mathrm{c}}\right)$ just downstream of the culvert entrance and the flow approaches normal depth $\left(\mathrm{d}_{\mathrm{n}}\right)$ at the downstream end of the culvert.

Typical Inlet Control Flow Profile

Figure 3-3.4.1

3-3.4.2 Calculating Headwater for Inlet Control

When a culvert is flowing in inlet control, two basic conditions exist. If the inlet is submerged, the inlet will operate as an orifice. If the inlet is unsubmerged, the inlet will operate as a weir. Equations have been developed for each condition and the equations demonstrate the relationship between headwater and discharge for various culvert materials, shapes, and inlet configurations. The inlet control nomographs shown Figures 3-3.4.2A-E utilize those equations and can be used to solve for the headwater.

To Determine Headwater (HW)

Step 1 Connect with a straightedge the given culvert diameter or height (D) and the discharge Q , or $\frac{\mathrm{Q}}{\mathrm{B}}$ for box culverts; mark intersection of straightedge $\frac{\mathrm{HW}}{\mathrm{D}}$ on scale marked (1).

Step 2 If $\frac{H W}{D}$ scale marked (1) represents entrance type used, read $\frac{H W}{D}$ on scale (1). If some other entrance type is used, extend the point of intersection found in Step 1 horizontally on scale (2) or (3) and read $\frac{H W}{D}$.

Step 3 Compute HW by multiplying $\frac{\text { HW }}{\text { D }}$ by D.

To Determine Culvert Size (D)

Step 1 Locate the allowable $\frac{H W}{D}$ on the scale for appropriate entrance type. If scale (2) or (3) is used, extend the $\frac{\text { HW }}{\mathrm{D}}$ point horizontally to scale (1).

Step 2 Connect the point on $\frac{\text { HW }}{\mathrm{D}}$ scale (1) as found in Step 1 to the given discharge Q and read diameter, height, or size of culvert required. If this value falls between two sizes, choose the next largest diameter.

To Determine Discharge (Q)

Step 1 Given HW and D, locate $\frac{H W}{D}$ on scale for appropriate entrance type. If scale (2) or (3) is used, extend $\frac{\text { HW }}{\mathrm{D}}$ point horizontally to scale (1).

Step 2 Connect point $\frac{\text { HW }}{\text { D }}$ scale (1) as found in Step 1 and the size of culvert on the left scale. Read Q or $\frac{\mathrm{Q}}{\mathrm{B}}$ on the discharge scale.

Step 3 If $\frac{Q}{B}$ is read in Step 2, multiply by B to find Q. B is the width of the culvert.

Concrete Pipe Inlet Control Nomograph

Figure 3-3.4.2A

Corrugated Metal and Thermoplastic Pipe Inlet Control Nomograph

Figure -3-3.4.2B

* additional sizes not dimensioned are LISTED IN FABRICATOR'S CATALOG

BUREAU OF PUBLIC ROADS JAN. 1963

Corrugated Metal Pipe-Arch Inlet Control Nomograph

Standard Sizes and 18-Inch Corner Radius
Figure-3-3.4.2C

Corrugated Metal Pipe-Arch Inlet Control Nomograph Large Sizes
Figure-3-3.4.2D

Box Culvert Inlet Control Nomograph
Figure-3-3.4.2E

3-3.4.3 Culverts Flowing With Outlet Control

In outlet control, the flow capacity of a culvert is controlled by the inlet, barrel, or tailwater conditions, or some combination of the three. Changing any parameter, such as the culvert size, entrance configuration, slope, roughness, or tailwater condition can have a direct impact on the headwater required to pass the design flow.

Outlet control usually occurs when a culvert is placed on a relatively flat slope, generally less than a 1 percent grade, or when the depth of tailwater is significant. Figure 3-3.4.3 demonstrates several typical outlet control flow profiles that can occur in a culvert. The method for computing the headwater for each of the profiles is the same and is described in Section 3-3.4.4. However, the method used to calculate outlet velocities for outlet control can vary as described in Section 3-3.5.2. Figure 33.4.3 can be useful for visually representing some of the concepts discussed in that section.

Figure 3-3.4.3(A) shows a full flow condition, with both the inlet and outlet submerged. The culvert barrel is in pressure flow throughout the entire length. This condition is often assumed in calculations but seldom actually exists.

Figure 3-3.4.3(B) shows the entrance submerged to such a degree that the culvert flows full throughout the entire length. However, the exit is unsubmerged by tailwater.This is a rare condition because it requires an extremely high headwater to maintain full barrel flow with no tailwater. The outlet velocities are unusually high under this condition.

Figure 3-3.4.3(C) is more typical. The culvert entrance is submerged by the headwater and the outlet flows freely with a low tailwater. For this condition the barrel flows partly full over at least part of its length and the flow passes through critical depth just upstream of the outlet.

Figure 3-3.4.3(D) is also typical, with neither the inlet nor the outlet end of the culvert submerged. The barrel flows partly full over its entire length. The procedure described in Section 3-3.4.4 for calculating headwater for outlet control flow does not give an exact solution in this case. However, the procedure is considered accurate when the headwater is .75 D and greater, where D is the height or rise of the culvert barrel.

Outlet Control Flow Profiles
Figure 3-3.4.3

3-3.4.4 Calculating Headwater For Outlet Control

Outlet control headwater (HW) cannot be solved for directly. Rather, HW can be found by utilizing the relationship shown in Equation (3-1) and Figure 3-3.4.4A.

$$
\begin{equation*}
H W=H+h_{o}-L S_{o} \tag{3-1}
\end{equation*}
$$

Outlet Control Flow Relationships

Figure 3-3.4.4A
Where: $\quad \mathrm{HW}=$ Headwater (ft)
$\mathrm{H}=$ Total head loss through the culvert, including entrance, barrel, and exit losses
$h_{o}=$ Approximation of the hydraulic grade line at the outlet of the culvert (ft)

LS $\quad 0=$ Product of the culvert length multiplied by the culvert slope (ft)

EGL = Energy Grade Line. The EGL represents the total energy at any point along the culvert barrel.
HGL $=$ Hydraulic Grade Line. Outside of the culvert, the HGL is equal to the water surface elevation. Inside the culvert, the HGL is the depth to which water would rise in vertical tubes connected to the sides of the culvert barrel.
$\mathrm{H}, \mathrm{h}_{\mathrm{o}}$, and LS_{o} can be calculated as described below, then used in conjunction with Equation 1 to determine HW.
$\mathbf{H}: \mathrm{H}$ is the total head loss through the culvert, generally expressed in units of feet. It is made up of three major parts: an entrance loss H_{e}, a friction loss through the barrel H_{f}, and an exit loss at the outlet Ho . Expressed in equation form, the total head loss is shown in equation (3-2):

$$
\mathrm{H}=\mathrm{H}_{\mathrm{e}}+\mathrm{H}_{\mathrm{f}}+\mathrm{H}_{\mathrm{o}}(3-2)
$$

Each of the losses are a function of the velocity head in the barrel. The velocity head is the kinetic energy of the water in the culvert barrel. The velocity head is equal to $\mathrm{V} 2 / 2 \mathrm{~g}$, where V is the mean velocity in the culvert barrel. The mean velocity is found by dividing the discharge by the cross-sectional area of the flow.

The entrance loss H_{e} is found by multiplying the velocity head by an entrance loss coefficient ke and is shown by Equation (3-3). The coefficient k_{e} for various types of culvert entrances can be found in Figure 3-3.4.5H.

$$
\mathrm{H}_{\mathrm{e}}=\mathrm{k}_{\mathrm{e}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}(3-3)
$$

The friction loss H_{f} is the energy required to overcome the roughness of the culvert barrel. It is found by multiplying the velocity head by an expression of Manning's equation and is given by Equation (3-4).

$$
\mathrm{H}_{\mathrm{f}}=\left[\frac{29 \mathrm{n}^{2} \mathrm{~L}}{\mathrm{R}^{1.33}}\right] \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}(3-4)
$$

Where: $\quad \mathrm{n}=$ Manning's roughness coefficient
$\mathrm{L}=$ Length of culvert barrel (ft)
$\mathrm{V}=$ Mean velocity of flow in culvert barrel (ft/s)
$\mathrm{R}=$ Hydraulic radius (ft)
($\mathrm{R}=\mathrm{D} / 4$ for full flow pipe, see section 4-4)
The exit loss at the outlet Ho occurs when flow suddenly expands after leaving the culvert. It is found by multiplying the velocity head by an exit loss coefficient, generally taken as 1.0 , and is given by Equation (3-5).

$$
\mathrm{H}_{\mathrm{o}}=1.0 \frac{\mathrm{~V}}{2 \mathrm{~g}}(3-5)
$$

Combining Equations (3), (4), and (5) and substituting back into (2), the total head loss H can be expressed as shown in equation (3-6):

$$
\mathrm{H}=\left[1+\mathrm{k}_{\mathrm{e}}+\frac{29 \mathrm{n}^{2} \mathrm{~L}}{\mathrm{R}^{1.33}}\right] \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}(3-6)
$$

The outlet control nomographs shown in Section 3-3.4.5 provide graphical solutions to Equation (3-6) and should be utilized to solve for H .
$\mathbf{h}_{\mathbf{0}}$: ho is an approximation of the hydraulic grade line at the outlet of the culvert and is equal to the tailwater or $\left(d_{c}+D\right) / 2$, whichever is greater. The term $\left(d_{c}+D\right) / 2$ represents an approximation of the hydraulic grade line at the outlet of the
culvert, where dc is equal to the critical depth at the outlet of the culvert and D is the culvert diameter or rise. When free surface flow occurs in a culvert operating in outlet control, the most accurate method for determining the HW elevation is to perform a backwater analysis through the culvert. This, however, can be a tedious and time-consuming process. Making the assumption that $\left(\mathrm{d}_{\mathrm{c}}+\mathrm{D}\right) / 2$ represents the hydraulic grade line simplifies the design procedure. The approximate method will produce reasonably accurate results when the headwater is 0.75 D and greater, where D is the culvert diameter or rise. In situations where the headwater is less than 0.75 D , the culvert should be designed using a computer software program, as discussed in Section 3-3.7. Most programs will perform a backwater analysis through the culvert and arrive at a more accurate solution for the headwater elevation than the approximate method.

As shown in Figure 3-3.4.4B, $\left(\mathrm{d}_{\mathrm{c}}+\mathrm{D}\right) / 2$ does not represent the actual water surface elevation at the outlet of the culvert and therefore should not be used for determining the corresponding outlet velocity. The method for determining the outlet velocity is discussed in Section 3-3.5.2

Hydraulic Grade Line Approximation

Figure 3-3.4.4B
$\mathbf{L S}_{\mathbf{0}}$: LS_{o} is the culvert length (L) multiplied by the culvert slope (S_{o}), expressed in feet.

3-3.4.5. Outlet Control Nomographs

The outlet control nomographs presented in this section allow the designer to calculate H , the total head loss through the culvert, as discussed in Section 3-3.4.4. The nomographs should be used in conjunction with Figure 3-3.6, Culvert Hydraulic Calculations Form.

Figure 3-3.4.5A shows a sample outlet control nomograph. The following set of instructions will apply to all of the outlet control nomographs in this section. To determine H for a given culvert and discharge:

Step 1: Locate the appropriate nomograph for type of culvert selected.

Step 2: Find the Manning's n value for the culvert from Appendix 4-1. If the Manning's n value given in the nomograph is different than the Manning's n for the culvert, adjust the culvert length using equation (3-7):

$$
\begin{equation*}
\mathrm{L}_{1}=\mathrm{L}\left[\frac{\mathrm{n}_{1}}{\mathrm{n}}\right] \tag{3-7}
\end{equation*}
$$

Where: $\quad \mathrm{L}_{1}=$ Adjusted culvert length (ft)
$\mathrm{L}=$ Actual culvert length (ft)
$\mathrm{n}_{1}=$ Actual Manning's n value of the culvert
$\mathrm{n}=$ Manning's n value from the nomograph
Step 3: Using a straightedge, connect the culvert size (point 1) with the culvert length on the appropriate k_{e} curve (point 2). This will define a point on the turning line (point 3). If a k_{c} curve is not shown for the selected k_{e}, interpolate between the two bounding k_{e} curves. Appropriate k_{e} factors are shown in Figure 3-3.4.5H.

Step 4: Again using a straightedge, extend a line from the discharge (flow rate) (point 4) through the point on the turning line (point 3) to the head loss H (barrel losses) scale (point 5). Read H.

Note: Careful alignment of the straightedge is necessary to obtain accurate results from the nomographs.

Figure 3-3.4.5G is the outlet control nomograph to be used for square box culverts. The nomograph can also be used for rectangular box culverts by calculating the cross-sectional area of the rectangular box and using that area as point 1 described in Step 3 above.

Sample Outlet Control Nomograph
Figure 3-3.4.5A

Concrete and Thermoplastic Pipe Outlet Control Nomograph

Figure 3-3.4.5B

Corrugated Metal Pipe Outlet Control Nomograph

Figure 3-3.4.5C

Structural Plat Corrugated Metal Pipe Outlet Control Nomograph
Figure 3-3.4.5D

Corrugated Metal Pipe-Arch Outlet Control Nomograph

Figure 3-3.4.5E

bureau of public roads jan. 1963
Corrugated Metal Pipe-Arch Outlet Control Nomograph
18 Inch Corner Radius
Figure 3-3.4.5F

Box Culvert Outlet Control Nomograph
Figure 3-3.4.5G

Type of Structure and Entrance Design	ke	Standard Plan
Concrete Pipe		
Projecting from fill, no headwall, socket (groove) end	0.2	
Projecting from fill, no headwall Square cut end	0.5	
Mitered to conform to fill slope (beveled end section)	0.7	B-70.20
Mitered to conform to fill slope, with concrete headwall	0.7	B-75.20
Flared end sections, metal or concrete	$\underline{0.5 B-70.60}$	Design B
Vertical headwall with wingwalls		
Socket end (groove end)	0.2 B	
Square cut end	0.5	
Rounded (radius = 1/12 D)	0.2*	
Metal and Thermoplastic Pipe or Pipe Arch		
Projecting from fill, no headwall	0.9	
Tapered end section	0.9	$\begin{aligned} & \text { B-80.20, } \\ & \underline{B-80.40} \end{aligned}$
Mitered to conform to fill slope (beveled end section)	0.7 B-70	
Mitered to conform to fill slope, with concrete headwall	0.7 B-75	
Flared metal or thermoplastic end sections	0.5 B-70.60	Design A
Vertical headwall with wingwalls	0.5	
Any headwall with beveled inlet edges	0.2*	
Reinforced Concrete Box		
Mitered concrete headwall to conform to fill slope		
Square-edged on 3 edges	0.5	
Rounded or beveled edges on 3 sides	0.2	
Wingwalls at 30 degrees to 75 degrees to barrel		
Square edge at crown	0.4	
Rounded or beveled edge at crown	0.2*	
Wingwalls at 10 degrees to 25 degrees to barrel		
Square edge at crown	0.5	
Wingwalls parallel to barrel		
Square edge at crown	0.7	
Side or slope tapered inlet	0.2*	

*Reference Section 3-4.6 for the design of special improved inlets with very low entrance losses
**Modified for round pipe.

Entrance Loss Coefficient $\mathbf{k}_{\mathbf{e}}$
 Outlet Control

Figure 3-3.4.5H

Critical Depth for Circular Pipe
Figure 3-3.45I

Critical Depth for Rectangular Shapes
Figure 3-3.4.5J

Critical Depth for Standard Corrugated Metal Pipe Arch
Figure 3-3.4.5K

Critical Depth for Structural Plate Corrugated Metal Pipe Arch
Figure 3-3.4.5L

3-3.5 Velocities in Culverts - General

A culvert, because of its hydraulic characteristics, generally increases the velocity of flow over that in the natural channel. High velocities are most critical just downstream from the culvert outlet and the erosion potential from the energy in the water must be considered in culvert design.

Culverts that produce velocities in the range of 3 to $10 \mathrm{ft} / \mathrm{s}(1$ to $3 \mathrm{~m} / \mathrm{s}$) tend to have fewer operational problems than culverts that produce velocities outside of that range. Varying the grade of the culvert generally has the most significant effect on changing the velocity, but since many culverts are placed at the natural grade of the existing channel, it is often difficult to alter this parameter. Other measures, such as changing the roughness characteristics of the barrel, increasing or decreasing the culvert size, or changing the culvert shape should be investigated when it becomes necessary to modify the outlet velocity.

If velocities are less than about $3 \mathrm{ft} / \mathrm{s}(1 \mathrm{~m} / \mathrm{s})$, siltation in the culvert may become a problem. In those situations, it may be necessary to increase the velocity through the culvert or provide a debris basin upstream of the inlet. A debris basin is an excavated area upstream of the culvert inlet that slows the stream velocity and allows sediments to settle out prior to entering the culvert. See Section 3-4.8 for additional information on debris basins. If the velocity in the culvert cannot be increased and if a debris basin cannot be provided at a site, another alternative is to provide oversized culverts. The oversized culverts will increase siltation in the culvert, but the larger size may prevent complete blocking and will facilitate cleaning. It is recommended that the designer consult with the Region Hydraulics Engineer to determine the appropriate culvert size for this application.

If velocities exceed about $10 \mathrm{ft} / \mathrm{s}(3 \mathrm{~m} / \mathrm{s})$, abrasion due to bed load movement through the culvert and erosion downstream of the outlet can increase significantly. Abrasion is discussed in more detail in Section 8-6. Corrugated metal culverts may be designed with extra thickness to account for possible abrasion. Concrete box culverts and concrete arches may be designed with sacrificial steel inverts or extra slab thicknesses to resist abrasion. Thermoplastic pipe exhibits better abrasion characteristics than metal or concrete; see Figure 8-6 for further guidance. Adequate outlet channel or embankment protection must be designed to insure that scour holes or culvert undermining will not occur. Energy dissipators can also be used to protect the culvert outlet and downstream property, as discussed in Section 3-4.7. The designer is cautioned that energy dissipators can significantly increase the cost of a
culvert and should only be considered when required to prevent a large scour hole or as remedial construction.

3-3.5.1 Calculating Outlet Velocities for Culverts in Inlet Control

When a culvert is flowing in inlet control, the water surface profile can be assumed to converge toward normal depth as flow approaches the outlet. The average outlet velocity for a culvert flowing with inlet control can be approximated by computing the normal depth and then the normal velocity for the culvert cross-section using Manning's equation, as shown below.

The normal depth approximation is conservative for short culverts and close to actual for long culverts. When solving for velocity using computer programs, a different velocity will be obtained. This occurs because the program does not make the normal depth approximation but rather computes a standard step backwater calculation through the pipe to develop the actual depth and velocity. Equation (3-8) is for full flow (80% to 100%):

$$
\begin{equation*}
V=\frac{1.486}{n} R^{2 / 3} S^{1 / 2} \text { (English Units) } \tag{3-8}
\end{equation*}
$$

or

$$
V=\frac{1}{n} R^{2 / 3} S^{1 / 2} \quad \text { (Metric Units) }
$$

Where: $\quad \mathrm{V}=$ Mean full velocity in channel, $\mathrm{m} / \mathrm{s}(\mathrm{ft} / \mathrm{s})$
$\mathrm{n}=$ Mannings roughness coefficient (see Appendix 4-1)
$\mathrm{S}=$ Channel slope, $\mathrm{m} / \mathrm{m}(\mathrm{ft} / \mathrm{ft})$
$\mathrm{R}=$ Hydraulic radius, $\mathrm{m}(\mathrm{ft})$
$\mathrm{A}=$ Area of the cross section of water, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{P}=$ Wetted perimeter, $\mathrm{m}(\mathrm{ft})$
Manning's equation should be used to solve for the outlet velocity in non-circular culverts. The procedure for determining the velocity is discussed in Chapter 4-3.

For circular culverts, a simplified version of Manning's equation can be used to calculate the velocity in the culvert. The simplified equation for partial flow ($10 \%-$ 80%) is given by equation (3-9):

$$
\begin{equation*}
V_{n}=\frac{0.863 S^{0.366} Q^{0.268}}{D^{0.048} n^{0.732}} \tag{3-9}
\end{equation*}
$$

Where: $\quad \mathrm{S}=$ Pipe slope $(\mathrm{ft} / \mathrm{ft})$
$\mathrm{Q}=$ Flow rate (cfs)
$\mathrm{D}=$ Pipe diameter (ft)
$\mathrm{N}=$ Manning's roughness coefficient
$\mathrm{V}_{\mathrm{n}}=$ Normal velocity for partial flow (ft/s)
The above equation was developed from the proportional flow curves shown in Figure 3-3.5.2 and is based on a constant Manning's roughness coefficient. When compared to normal velocities, as calculated by a complete normal depth analysis, the results of this equation are accurate to within ± 5 percent.

In some circumstances, a culvert can be flowing in inlet control but the outlet may be submerged. In that situation, the outlet velocity can be found by $\mathrm{V}_{\text {out }}=\mathrm{Q} / \mathrm{A}_{\text {total }}$, where $\mathrm{A}_{\text {total }}$ is the full area of the culvert. This condition is rare, and should only be assumed when the outlet is fully submerged and the velocities in the pipe have had a chance to reduce before the outlet.

3-3.5.2 Calculating Outlet Velocities for Culverts in Outlet Control

When a culvert is flowing in outlet control, the average outlet velocity can be found by dividing the discharge by the cross-sectional area of flow at the outlet. There are three general water surface conditions that can exist at the outlet and affect the crosssectional area of flow. The designer must determine which one of the three conditions exist and calculate the outlet velocity accordingly.

Condition 1: If the tailwater is greater than the diameter of the culvert, the total area of the culvert is used to calculate the outlet velocity.

Condition 2: If the tailwater is greater than critical depth but less than the diameter of the culvert, the tailwater depth is used to calculate the area of flow in the pipe and the corresponding outlet velocity.

In culverts flowing with outlet control, the flow profile tends to converge toward critical depth as flow approaches the outlet. In Condition 2 , the flow profile is converging to critical depth near the outlet, but a tailwater depth exists that is greater than the critical depth. Therefore, the tailwater depth will dictate the corresponding area of flow to be used in the velocity calculation.

Condition 3: If the tailwater is equal to or less than critical depth, critical depth is used to calculate the area of flow and corresponding outlet velocity.

$A_{\text {critical }}=$ Area of flow at critical depth

Condition 3 represents a situation where a culvert flowing with outlet control is allowed to freely discharge out of the end of the culvert. The tailwater in this case has no effect on the depth of flow at the outlet. Instead, critical depth is used to determine the flow area and corresponding outlet velocity. Critical depth for various shapes can be calculated from the equations shown in Section 4-5 or read from the critical depth charts shown in Figures 3-3.4.5I to L.

Once it has been determined which of the three outlet conditions exist for a given design, the corresponding area of flow for the outlet depth can be determined. The geometrical relationship between the depth of flow and area of flow can range from very simple for structures such as box culverts to very complex for structures such as pipe arches and bottomless culverts. Generally, utilizing a computer program, as discussed in Section 3-3.7, is the most accurate method for completing a culvert design that includes complex shapes.

For circular culverts, the area of flow for a given outlet depth can be determined using the proportional flow curves shown in Figure 3-3.5.2. The curves give the proportional area, discharge, velocity and hydraulic radius of a circular culvert when the culvert is flowing less than full. Once the area has been calculated, the corresponding outlet velocity can be determined. The following example illustrates how to use the chart:

3-3.5.2.1 Example - Calculating Outlet Velocities for Culverts in Outlet Control

Assume that a design was completed on a $6 \mathrm{ft}(1800 \mathrm{~mm})$ diameter pipe with a flow of $150 \mathrm{cfs}(4.3 \mathrm{cms})$. The pipe was found to be in outlet control and a tailwater of 5 ft $(1.5 \mathrm{~m})$ was present. Determine the flow condition that exists and calculate the outlet velocity.

Step 1 From Figure 3-3.4.5I, critical depth dc was found to be 3.6 ft (1.1 m).
Step 2 Determine the flow condition.

$$
\begin{aligned}
\mathrm{D} & =6 \mathrm{ft}(1.8 \mathrm{~m}) \\
\mathrm{TW} & =5 \mathrm{ft}(1.5 \mathrm{~m}) \\
\mathrm{d}_{\mathrm{c}} & =3.6 \mathrm{ft}(1.1 \mathrm{~m})
\end{aligned}
$$

Since dc $<\mathrm{TW}<\mathrm{D}$, Condition 2 exists. Therefore, the area of flow caused by the tailwater depth will be used.

Step 3 Find the ratio of the depth of flow (d) to the diameter of the pipe (D), or d/D.

$$
\begin{aligned}
\mathrm{d} & =\text { tailwater depth }=5 \mathrm{ft}(1.5 \mathrm{~m}) \\
\mathrm{D} & =\text { pipe diameter }=6 \mathrm{ft}(1.8 \mathrm{~m}) \\
\mathrm{d} / \mathrm{D} & =5 / 6=0.83
\end{aligned}
$$

Step 4 Go to the proportional flow curves of Figure 3-3-5.2. Locate 0.83 on the vertical axis. Extend a line horizontally across the page and intercept the point on the "Proportional Area" curve.

Step 5 From the point found on the "Proportional Area" curve, extend a line vertically down the page and intercept the horizontal axis. The value read from the horizontal axis is approximately 0.89 . This value represents the ratio of the proportional flow area $\left(\mathrm{A}_{\text {prop }}\right)$ to the full flow area $\left(\mathrm{A}_{\text {full }}\right)$, or $\mathrm{A}_{\text {prop }} / \mathrm{A}_{\text {full }}=$ 0.89 .

Step 6 Find the proportional flow area. The equation $\mathrm{A}_{\text {prop }} / \mathrm{A}_{\text {full }}=0.89$ can be rearranged to:

$$
\begin{align*}
& \mathrm{A}_{\text {prop }}=0.89 \mathrm{~A}_{\text {full }}(3-10) \\
& \mathrm{A}_{\text {full }}=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi(6)^{2}}{4}=28.6 \mathrm{ft}^{2}\left(2.54 \mathrm{~m}^{2}\right) \tag{3-11}\\
& \mathrm{A}_{\text {prop }}=0.89(28.6)=25.2 \mathrm{ft}^{2}\left(2.26 \mathrm{~m}^{2}\right)
\end{align*}
$$

Step $7 A_{\text {prop }}$ is equal to $A_{T w}$. Use $A_{\text {prop }}$ and Q to solve for the outlet velocity.

$$
\begin{equation*}
\mathrm{V}_{\text {outlet }}=\frac{\mathrm{Q}}{\mathrm{~A}_{\text {prop }}}=\frac{150}{25.2}=6 \frac{\mathrm{ft}}{\mathrm{~s}}\left(1.9 \frac{\mathrm{~m}}{\mathrm{~s}}\right) \tag{3-12}
\end{equation*}
$$

The previous example was solved by first determining the proportional area from Figure 3-3.5.2. Utilizing the "Proportional Velocity" curve from the same figure could also have solved the example. Picking up on

Step 3 from above, the ratio of d / D would remain the same, 0.83 .
Step 4 Go to the proportional flow curves of Figure 3-3.5.2. Locate 0.83 on the vertical axis. Extend a line horizontally across the page and intercept the point on the "Proportional Velocity" curve.

Step 5 From the point found on the "Proportional Velocity" curve, extend a line vertically down the page and intercept the horizontal axis. The value read from the horizontal axis is approximately 1.14. This value represents the ratio of the proportional velocity ($\mathrm{V}_{\text {prop }}$) to the full flow velocity $\left(\mathrm{V}_{\text {full }}\right)$, or $\mathrm{V}_{\text {prop }} / \mathrm{V}_{\text {full }}=1.14$.
Step 6 Rearrange $\frac{\mathrm{V}_{\text {prop }}}{\mathrm{V}_{\text {full }}}=1.14$ to

$$
\mathrm{V}_{\text {prop }}=1.14 \mathrm{~V}_{\text {full }}(3-13)
$$

Step 7 Find $V_{\text {full }}$ by solving the equation $V_{\text {full }}=\frac{Q}{A_{\text {full }}}$

$$
\begin{aligned}
& \mathrm{Q}=150 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}\left(4.3 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right) \\
& \mathrm{A}_{\text {full }}=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi(6)^{2}}{4}=28.3 \mathrm{ft}^{2}\left(2.54 \mathrm{~m}^{2}\right) \\
& \mathrm{V}_{\text {full }}=\frac{150}{28.3}=5.3 \frac{\mathrm{ft}}{\mathrm{~s}}\left(1.69 \frac{\mathrm{~m}}{\mathrm{~s}}\right)
\end{aligned}
$$

Step 8 Solve for $\mathrm{V}_{\text {prop }}$ using equation (3-13) which is the outlet velocity.

$$
\mathrm{V}_{\text {prop }}=1.14 \mathrm{~V}_{\text {full }}=1.14\left(5.3 \frac{\mathrm{ft}}{\mathrm{~s}}\right)=6 \frac{\mathrm{ft}}{\mathrm{~s}}\left(1.9 \frac{\mathrm{~m}}{\mathrm{~s}}\right)
$$

Proportional Flow Curve
Figure 3-3-5.2

3-3.6 Culvert Hydraulic Calculations Form

A "Culvert Hydraulic Calculations" form has been developed to help organize culvert hydraulic computations. The form is shown in Figure 3-3.6A and B and should be used in all Hydraulic Reports that involve culvert designs utilizing hand calculations. If a culvert is designed using a computer program, it is not necessary to include the form in the Hydraulic Report, provided that all design information is included in the input and output files created by the program. Included in this section is an explanation of each of the components of the form and the corresponding chapter section that provides additional information. Figure 3-3.6A has been labeled with either alpha or numeric characters to facilitate discussion for each component on the form. A second form, Figure 3-3.6B, is a blank copy of the culvert hydraulic calculations form. The blank copy should be used by the designer and included as part of the hydraulic report.

From Figure 3-3.6A:
A, A' and A": Design flow(s) Q, in cfs — Section 3-3.1
B, B', and B": Depth of tailwater (TW) in feet, using the corresponding design flow values - Section 3-3.3

C: Elevation of the centerline of the roadway. This is the elevation used to determine roadway overtopping.

D: Allowable headwater depth (AHW), in feet, as discussed in Section 3-3.2 Any significant features upstream that are susceptible to flood damage from headwater should be identified. The elevation at which damage would occur should be identified and incorporated into the design process.

E and E': Inlet and outlet invert elevations, in feet.
F: \quad Slope of culvert (So), in feet/feet.
G: Approximate length (L) of culvert, in feet.
Column 1: Culvert Type
Include barrel material, barrel cross-sectional shape, and entrance type.
Column 2: $\quad \mathrm{Q}$ - Section 3-3.1
Indicate which design flow from $\mathrm{A}, \mathrm{A}^{\prime}$, or $\mathrm{A} "$ is being evaluated.
Separate calculations must be made for each design flow.

Culvert Hydraulic Calculations Form (Instructional Form)
Figure 3-3.6A
(WSDOT form 235-006)

Culvert Hydraulic Calculations Form
Figure 3-3.6B
(WSDOT form 235-006)

Column 3: \quad Size

Pipe diameter or span and rise, generally indicated in feet.
Column 4: $\quad \mathrm{HW}_{\mathrm{i}} / \mathrm{D}$ (inlet control)
The headwater to diameter ratio is found from the appropriate nomographs 33.4.2A to E.

Column 5: HW (inlet control) - Section 3-3.4.2
This value is found by multiplying Column 3 by Column 4. This is the headwater caused by inlet control. If the inlet control headwater is greater than the allowable headwater as shown in D , the pipe size should be increased. If the headwater is less than allowable, then proceed with the next step. Once the inlet control headwater has been determined, it will be compared with the outlet control headwater in Column 12. The larger of the two values will be the controlling headwater and that value will be entered in Column 13.

Column 6: $\quad \mathrm{ke}$

This is the entrance loss coefficient for outlet control taken from Figure 3-3.4.5H.

Column 7: Critical Depth

Critical depth can be determined for circular and rectangular shapes by using either the equations shown in Section 4-4 or read from the critical depth charts shown in Figures 3-3.4.5I to L. The critical depth for pipe arches can only be determined by the use of Figures $3-3.4 .5 \mathrm{~K}$ and L .

If critical depth is found to be greater than the pipe diameter or rise, set the critical depth equal to the diameter or rise.

Column 8: $\quad \frac{\mathrm{d}_{\mathrm{c}}+\mathrm{D}}{2}$ - Figure 3-3.4.4B
Equation (3-14) represents an approximation of the hydraulic grade line at the outlet of the culvert, where dc is equal to the critical depth at the outlet of the culvert and D is the culvert diameter or rise. It is used to help calculate headwater during outlet control computations. As shown in Figure 3-3.4.4B, (dc +D$) / 2$ does not represent the actual water surface elevation at the outlet of the culvert and therefore should not be used for determining the corresponding outlet velocity. The method for determining the outlet velocity is discussed in Section 3-3.5.2

Column 9: ho - Section 3-3.4.4
ho is equal to either the tailwater or the term $(\mathrm{dc}+\mathrm{D}) / 2$, whichever is greater.
Column 10: $\quad \mathrm{H}-$ Section 3-3.4.4
H is the total amount of head loss in the barrel of the pipe including the minor losses at the entrance and the exit of the pipe.

The head loss is determined by equation (3-4):

$$
H=\left[1+K_{e}+\frac{29 n^{2} L}{R^{1.33}}\right] \frac{V^{2}}{2 g}(3-4)
$$

or it may be determined by the outlet control nomographs shown in Figures 33.4.5B to G. Both the nomographs and the equation are based on the assumption that the barrel is flowing completely full or nearly full. This is usually the case with most outlet control pipes, but some exceptions do occur. When the barrel is partially full, solving for H using either the nomographs or the equation will tend to overestimate the actual headlosses through the culvert. This will result in a higher, and more conservative, headwater value. A more accurate headwater can be obtained by designing a culvert using a computer program, as described in Section 3-3.7.

Column 11: LSo

This column is the product of the culvert length (L) multiplied by culvert slope (so) or it is equal to the inlet elevation minus the outlet elevation of the culvert.

Column 12: HW— Section 3-3.4.4

This column shows the amount of headwater resulting from outlet control. It is determined by equation (3-15):

HW ${ }_{\mathrm{o}}=\mathrm{H}+\mathrm{ho}-\mathrm{L}$ So (3-15)
Column 13: Controlling HW
This column contains the controlling headwater, which is taken from Column 5 or Column 12 whichever is greater. This value is the actual headwater caused by the culvert for the particular flow rate indicated in Column 2.

Column 14: Outlet Velocity

If the culvert was determined to be in inlet control, velocity at the outlet can be determined using the method described in Section 3-3.5.1. If the culvert was determined to be in outlet control, the outlet velocity can be determined using the method described in Section 3-3.5.2.

Column 15: Comments

As appropriate.
Column 16: Summary and Recommendations
As appropriate.

3-3.7 Computer Programs

Once familiar with culvert design theory as presented in this chapter, the designer is encouraged to utilize one of a number of commercially available culvert design software programs. The Federal Highway Administration has developed a culvert design program called HY-8 that utilizes the same general theory presented in this chapter. HY-8 is DOS menu-driven and easy to use, and the output from the program can be printed out and incorporated directly into the Hydraulic Report. HY-8 is copyright protected but the copyright allows for free distribution of the software. It is available by contacting either the Region Hydraulic Office/Contact or Office on the web at

- http://www.wsdot.wa.gov/eesc/design/hydraulics/downloads.htm.

In 2002, the FHWA developed a window interface to HY8, called HY8InpGen and HY8PCViewer. To attain this new software contact your Region IT or MIS support group. It is level playing field software and more user friendly than the DOS version. The HY8InpGen is the input file generator it stores all the data information and it uses the DOS engine to run the computation that creates a PC file. The HY8PCViewer is the output file viewer, to view the created PC file in different formats.

In addition to ease of use either software, HY-8 is advantageous in that the headwater elevations and outlet velocities calculated by the program tend to be more accurate than the values calculated using the methods presented in this chapter. HY-8 computes an actual water surface profile through a culvert using standard step-backwater calculations. The methods in this chapter approximate this approach but make several assumptions in order to simplify the design. HY-8 also analyzes an entire range of flows input by the user. For example, the
program will simultaneously evaluate the headwater created by the Q10\%, Q25, and Q100 flow events, displaying all of the results on one screen. This results in a significantly simplified design procedure for multiple flow applications. The basic Hydrology and Hydraulic training manual contains a section that has a step-by-step guidance on how to use HY8 DOS version. The manual can be found at the following web link:
Bhttp://www.wsdot.wa.gov/eesc/design/hydraulics/training.htm

3-3.8 Example

A hydrological analysis was completed for a basin above a proposed roadway and culvert crossing. The analysis found that the 25 -year flow event was 300 cfs and the 100 -year flow event was 390 cfs . In the vicinity of the culvert, the preferable roadway profile would place the centerline at elevation 1,530 feet, about 10 feet higher than the existing channel bottom. The tailwater depth was found to be 5 feet during the 25 -year flow event and 5.5 feet during the 100 -year flow event. Also, there are no fish passage concerns at this location. Assume that the culvert will be 100 ft long and will match the existing channel slope of 0.005 $\mathrm{ft} / \mathrm{ft}$. Then determine the appropriate culvert material and size, and calculate the controlling headwater elevation and corresponding outlet velocity for both the 25 - and 100-year events.

Step 1: The designer must choose an initial type of culvert material to begin the design. Once the culvert is analyzed, the designer may go back and choose a different type of material or pipe configuration to see if the hydraulic performance of the culvert can be improved. In this case, assume that a circular concrete culvert was chosen.

Step 2: Use the hydraulic calculation form shown in Figure 3-3.6 and fill out the known information (see Figure 3-3.8A the complete form for this example). This would include the design flows, tailwater, roadway and culvert elevations, length, slope, and material type. Two design flows were given, one for the 25 -year flow event and one for the 100-year flow event. The designer should first analyze the 25 -year flow event.

Step 3: The next piece of information needed is the culvert size. In some cases, the culvert diameter is already known and the size can be entered in the appropriate column. In this example, the diameter was not given. In order to
determine the appropriate diameter, go to the inlet control nomograph for concrete pipe, Figure 3-3.4.2A.

Step 4: On the nomograph, there are three entrance types available. Assume that in this case, the culvert end will be out of the clear zone and aesthetics are not a concern. Entrance type (3) is an end condition where the pipe is left projecting out of the fill, with the bell or grooved end facing upstream. Choose this entrance type.

Step 5: Because of the relatively low embankment height in this example, it is recommended that the culvert be designed using an HW/D ratio during the 25year event equal to or less than 1.25 . On the right hand side of the nomograph, find 1.25 on the vertical HW/D scale representing entrance type (3).

Step 6: Using a straightedge, extend that point horizontally to the left and mark the point where it intercepts scale (1). The point marked on scale (1) should be about 1.37.

Step 7: Connect the point just found on scale (1) with 300 cfs on the discharge scale and read the required culvert size on the diameter scale. The value read should be about 75 inches. Since culverts are typically fabricated only in the sizes shown on the nomograph, choose the next largest diameter available, which in this case is 84 inches (7 feet).

Step 8: The 7-feet diameter culvert is slightly larger than the required size. Therefore, the actual HW/D ratio will be less than the 1.25 used to begin the design. To find the new $\mathrm{HW}_{\mathrm{i}} \mathrm{D}$ ratio, line up the 84 -inch mark on the diameter scale and 300 cfs on the discharge scale, and then mark the point where the straightedge intersects scale (1). This value should be about 1.05.

Step 9: Extend that point horizontally to the right to scale (3) and find an HW/D ratio of about 0.98 . This is the actual HW/D ratio for the culvert.

Step 10: Find the inlet control headwater by multiplying the HW/D ratio just found by the culvert diameter. HW $=0.98 \times 7^{\prime}=6.86^{\prime}$. The previous steps found the headwater for inlet control. The next several steps will be used to find the headwater for outlet control.

Step 11: Go to Figure 3-3.4.5H and find the entrance loss coefficient for the culvert. As discussed in Step 4, the grooved end is projecting; therefore, choose an entrance loss coefficient of 0.2.

Step 12: \quad Find the critical depth-using Figure 3-3.4.5I. $d_{c}=4.6 \mathrm{ft}$
Step 13: Use equation (3-14) to find the value for:
(d

$$
\mathrm{c}+\mathrm{D}) / 2=(4.6+7) / 2=5.8 \mathrm{ft}
$$

Step 14: \quad The value for ho is equal to the value found from equation (3-14) or the tailwater, whichever is greater. In this case, the tailwater was given as 5 ft , therefore, ho is equal to 5.8 ft .

Step 15: \quad The value for H can be found by using the outlet control nomograph for concrete pipe shown in Figure 3-3.4.5B. With a straightedge, connect the 84 -inch point on the diameter scale with the 100 -foot length on the $0.2 \mathrm{k}_{\mathrm{e}}$ scale. This will define a point on the turning line. Mark that point.

Step 16: Again with a straightedge, go to the discharge scale and line up 300 cfs with the point just found on the turning line. Extend the line across the page to the head loss scale and find a value of about 1.3 ft .

Step 17: The value for LS_{o} can be found by multiplying the culvert length times the slope. $\mathrm{LS}_{\mathrm{o}}=100 \times .005=0.5 \mathrm{ft}$.

Step 18: The outlet control headwater can be found by solving equation (4-15):

HW ${ }_{\mathrm{o}}=\mathrm{H}+\mathrm{h}_{\mathrm{o}}-\mathrm{LS}_{\mathrm{o}}=1.3+5.8-0.5=6.6 \mathrm{ft}$.
The controlling headwater is the larger value of either the inlet control or the outlet control headwater. In this example, the inlet control headwater was found to be 6.86 feet. This value is greater than the 6.6 ft calculated for the outlet control headwater and therefore will be used as the controlling headwater.

Step 19: Using the equation shown in Section 3-3.5.1, the outlet velocity was found to be $13.2 \mathrm{ft} / \mathrm{s}$. This velocity could cause erosion problems at the outlet, so the designer may want to consider protecting the outlet with riprap, as discussed in Section 3-4.7

The 100-year event must also be checked, using the same procedure. The results of the analysis are summarized below:

$\mathrm{HW}_{\mathrm{i}} / \mathrm{D}:$	1.18 ft
$\mathrm{HW}_{\mathrm{i}}:$	8.26 ft
k_{e}	0.2 Cl
d_{c}	5.1 ft
$\left(\mathrm{d}_{\mathrm{c}}+\mathrm{D}\right) / 2$	6.05 ft
h_{o}	6.05 ft
H	2.2 ft
LS_{o}	0.5 ft
HW_{o}	7.75 ft
Cont. HW	8.26 ft
Out. Vel.	$14.1 \mathrm{ft} / \mathrm{s}$

Figure 3-3.8A shows a complete culvert hydraulic calculation form for this example. Figure 3-3.8B shows the controlling headwater elevations and outlet velocities for both flow events in English and metric units.

Summary and recommendations: The 100-year headwater is less than 2 feet below the roadway centerline. This may or may not present a problem, depending on the accuracy of the basin flow calculations, the amount of debris in the stream, and the importance of keeping the roadway open during a large event. The designer may want to consider evaluating a different culvert shape, such as a box culvert or low profile arch. These structures tend to provide a larger flow area for a given height, and could potentially pass the design flows without creating as much headwater.

Completed Culvert Hydraulic Calculations Form
Figure 3-3.8A

Flow Event	Controlling Headwater Elevation		Outlet Velocity	
	$\mathbf{f t}$	\mathbf{m}	$\mathbf{f t} / \mathbf{s}$	\mathbf{m} / \mathbf{s}
25 -year 15	26.86	465.386	13.2	4.0
100-year 15	28.26	465.81	14.1	4.3

Example Problem
Figure 3-3.8B

3-4 Culvert End Treatments

The type of end treatment used on a culvert depends on many interrelated and sometimes conflicting considerations. The designer must evaluate safety, aesthetics, debris capacity, hydraulic efficiency, scouring, and economics. Each end condition may serve to meet some of these purposes, but none can satisfy all these concerns. The designer must use good judgment to arrive at a compromise as to which end treatment is most appropriate for a specific site. Treatment for safety is discussed in Section 640.03(4) of the Design Manual.

A number of different types of end treatments will be discussed in this section. The type of end treatment chosen for a culvert shall be specified in the contract plans for each installation.

3-4.1 Projecting Ends

A projecting end is a treatment where the culvert is simply allowed to protrude out of the embankment, see Figure 3-4.1. The primary advantage of this type of end treatment is that it is the simplest and most economical of all treatments. Projecting ends also provide excellent strength characteristics since the pipe consists of a complete ring structure out to the culvert end.

There are several disadvantages to projecting ends. For metal, the thin wall thickness does not provide flow transition into or out of the culvert, significantly increasing head losses (the opposite is true for concrete, the thicker wall provides a more efficient transition). From an aesthetic standpoint, projecting ends may not be desirable in areas exposed to public view. They should only be used when the culvert is located in the bottom of a ravine or in rural areas.

Modern safety considerations require that no projecting ends be allowed in the designated clear zone. See the Design Manual (M 22-01) for details on the clear zone and for methods, which allow a projecting end to be used close to the traveled roadway.

Projecting ends are also susceptible to flotation when the inlet is submerged during high flows. Flotation occurs when an air pocket forms near the projecting end, creating a buoyant force that lifts the end of the culvert out of alignment. The air pocket can form when debris plugs the culvert inlet or when significant turbulence occurs at the inlet as flow enters culvert. Flotation tends to become a problem when the diameter exceeds 6 feet (1800 mm)for metal pipe and 2 feet $(610 \mathrm{~mm})$ for thermoplastic pipe. It is recommended that pipes that exceed those diameters be installed with a beveled end and a concrete headwall or slope collar as described in Sections 3-4.2 and 3-4.4. Concrete pipe will not experience buoyancy problems and can be projected in any diameter. However, because concrete pipe is fabricated in relatively short 6 to 12 feet (2 to 4 meter) sections, the sections are susceptible to erosion and corresponding separation at the joint.

Projecting End

Figure 3-4.1

3-4.2 Beveled End Sections

A beveled end treatment consists of cutting the end of the culvert at an angle to match the embankment slope surrounding the culvert. A schematic is shown on Standard Plan B-70.20 and in Figure 3-4.2. A beveled end provides a hydraulically more efficient opening than a projecting end, is relatively cost effective, and is generally considered to be aesthetically acceptable. Beveled ends should be considered for culverts about 6 feet $(1800 \mathrm{~mm})$ in diameter and less. If culverts larger than about 6 feet (1800 mm) in diameter are beveled but not reinforced with a headwall or slope collar, the structural integrity of the culvert
can be compromised and failure can occur. The standard beveled end section should not be used on culverts placed on a skew of more than 30 degrees from the perpendicular to the centerline of the highway, however a standard beveled end section can be considered if the culvert is rotated until it is parallel with the highway. Cutting the ends of a corrugated metal culvert structure to an extreme skew or bevel to conform to the embankment slope destroys the ability of the end portion of the structure to act as a ring in compression. Headwalls, riprap slopes, slope paving, or stiffening of the pipe may be required to stabilize these ends. In these cases, special end treatment shall be provided if needed. The Region Hydraulics Section/Contact or the HQ Hydraulics Office can assist in the design of special end treatments.

Beveled End Section

Figure 3-4.2

3-4.3 Flared End Sections

A metal flared end section is a manufactured culvert end that provides a simple transition from culvert to streambed. Flared end sections allow flow to smoothly constrict into a culvert entrance and then spread out at the culvert exit as flow is discharged into the natural stream or watercourse. Flared ends are generally considered aesthetically acceptable since they serve to blend the culvert end into the finished embankment slope.

Flared end sections are typically used only on circular pipe or pipe arches. The acceptable size ranges for flared ends, as well as other details, are shown on Standard Plan B-70.60 and a detail is shown in Figure 3-4.3. Flared ends are generally constructed out of steel and aluminum and should match the existing culvert material if possible. However, either type of end section can be attached to concrete or thermoplastic pipe and the contractor should be given the option of furnishing either steel or aluminum flared end sections for those materials.

A flared end section is usually the most feasible option in smaller pipe sizes and should be considered for use on culverts up to 48 inch (1800 mm) in diameter. For diameters larger than 48 inch (1800 mm), end treatments such as concrete headwalls tend to become more economically viable than the flared end sections.

The undesirable safety properties of flared end sections generally prohibit their use in the clear zone for all but the smallest diameters. A flared end section is made of light gage metal and because of the overall width of the structure; it is not possible to modify it with safety bars. When the culvert end is within the clear zone and safety is a consideration, the designer must use a tapered end section with safety bars as shown on Standard Plan B-80.20 and B-80.40. The tapered end section is designed to match the embankment slope and allow an errant vehicle to negotiate the culvert opening in a safe manner.

Flared End Section

Figure 3-4.3

3-4.4 Headwalls and Slope Collars

A headwall is a concrete frame poured around a beveled culvert end. It provides structural support to the culvert and eliminates the tendency for buoyancy. A headwall is generally considered to be an economically feasible end treatment for metal culverts that range in size from 6 to 10 feet (1800 to 3050 mm). Metal culverts smaller than 6 feet (1800 mm) generally do not need the structural support provided by a headwall. Headwalls should be used on thermoplastic culverts larger than 2 feet (600 mm). A typical headwall is shown on Standard Plan B-75.20 or in Figure 3-4.4. When the culvert is within the clear zone, the headwall design can be modified by adding safety bars. Standard Plan B-75.50
and B-75.60 provide the details for attaching safety bars. The designer is cautioned not to use safety bars on a culvert where debris may cause plugging of the culvert entrance even though the safety bars may have been designed to be removed for cleaning purposes. When the stream is known to carry debris, the designer should provide an alternate solution to safety bars, such as increasing the culvert size or providing guardrail protection around the culvert end. Headwalls for culverts larger than 10 feet (3000 mm)tend to lose costeffectiveness due to the large volume of material and forming cost required for this type of end treatment. Instead, a slope collar is recommended for culverts larger than 10 feet (3000 mm). A slope collar is a reinforced concrete ring surrounding the exposed culvert end. The HQ Hydraulics Office generally performs the design of the slope during the structural analysis of the culvert.

Headwall
Figure 3-4.4

3-4.5 Wingwalls and Aprons

Wingwalls and aprons are intended for use on reinforced concrete box culverts. Their purpose is to retain and protect the embankment, and provide a smooth transition between the culvert and the channel. Normally, they will consist of flared vertical wingwalls, a full or partial apron, and bottom and side cutoff walls (to prevent piping and undercutting). Wingwalls may also be modified for use on circular culverts in areas of severe scour problems. The apron will provide a smooth transition for the flow as it spreads to the natural channel. When a modified wingwall is used for circular pipe the designer must address the
structural details involved in the joining of the circular pipe to the square portion of the wingwall. The HQ Hydraulics Office can assist in this design.

Modified Wingwall for Circular Pipe
Figure 3-4.5A

3-4.6 Improved Inlets

When the head losses in a culvert are critical, the designer may consider the use of a hydraulically improved inlet. These inlets provide side transitions as well as top and bottom transitions that have been carefully designed to maximize the culvert capacity with the minimum amount of headwater, however, the design and form construction costs can become quite high for hydraulically improved inlets. For this reason, their use is not encouraged in routine culvert design. It is usually less expensive to simply increase the culvert diameter by one or two sizes to achieve the same or greater benefit.

Certain circumstances may justify the use of an improved inlet. When complete replacement of the culvert is too costly, an existing inlet controlled culvert may have its capacity increased by an improved inlet. Improved inlets may also be justified in new construction when the length of the new culvert is very long (over 500 feet) and the headwater is controlled by inlet conditions. Improved inlets may have some slight advantage for barrel or outlet controlled culverts, but usually not enough to justify the additional construction costs. If the designer believes that a particular site might be suitable for an improved inlet, the HQ Hydraulics Office should be contacted. Also, HDS 5 contains a significant amount of information related to the design of improved inlets.

3-4.7 Energy Dissipators

When the outlet velocities of a culvert are excessive for the site conditions, the designer may consider the use of an energy dissipator. Energy dissipators can be quite simple or very complex, depending on the site conditions. Debris and maintenance problems should be considered when designing energy dissipators. Typical energy dissipators include:

1. Riprap Protected Outlets

Hand placed riprap is frequently placed around the outlet end of culverts to protect against the erosive action of the water. The size of material at the outlet is dependant on the outlet velocity as noted in Figure 3-4.7.1. The limits of this protection would typically cover an area that would normally be vulnerable to scour holes. See Section 3-4.5 for details on wingwalls and aprons.

Outlet Velocity (ft/sec)	Material
$6-10$ Quarry	Spalls
$10-15$	Light Loose Riprap
>15 Heavy	Loose Riprap

> Designers should provide geotextile or filter material between any outlet material and the existing ground for soil stabilization, see section 4-6.3.2 for information..

Outlet Protection Material Size

Figure 3-4.7.1
2. Splash Pads

Concrete splash pads are constructed in the field at the culvert outlet and used to prevent erosion. Splash pads should be a minimum of three times the diameter wide and four times the diameter long as shown in Figure 3-4.7.2.

Splash Pad Detail
Figure 3-4.7.2
3. Other Energy Dissipating Structures

Other structures include impact basins and stilling basins/wells designed according to the FHWA Hydaulic Engineering Circular No. 14, "Hydraulic Design of Energy Dissipators for Culverts and Channels." These structures may consist of baffles, posts, or other means of creating roughness to dissipate excessive velocity. It is recommended that the HQ Hydraulics Office be consulted to assist in the design of these type of structures.

Energy dissipators have a reputation for collecting debris on the baffles, so the designer should consider this possibility when choosing a dissipator design. In areas of high debris, the dissipator should be kept open and easily accessible to maintenance crews. Provisions should be made to allow water to overtop without causing excessive damage.

3-4.8 Culvert Debris

Debris problems can cause even an adequately designed culvert to experience hydraulic capacity problems. Debris may consist of anything from limbs and sticks or orchard pruning, to logs and trees. Silt, sand, gravel, and boulders can also be classified as debris. The culvert site is a natural place for these materials to settle and accumulate. No method is available for accurately predicting debris problems. Examining the maintenance history of each site is the most reliable
way of determining potential problems. Sometimes, upsizing a culvert is necessary to enable it to more effectively pass debris. Upsizing may also allow a culvert to be more easily cleaned. Other methods for protecting culverts from debris problems are discussed below.

1. Debris Deflector (see Figure 3-4.8A)

A debris deflector is V-shaped and designed to deflect heavy floating debris or boulders carried as a bed load in the moderate to high velocity streams usually found in mountains or steep terrain. It is located near the entrance of the culvert with the vortex of the V placed upstream. The horizontal spacing(s) of the vertical members should not exceed "D," where D is the diameter or the smallest dimension of a non-circular culvert. The length should be 3D, the width 2D, and the height equal to D .

ELEVATION

Debris Deflector

Figure 3-4.8A
2. Debris Rack

The debris rack is placed across the channel of the stream. It should be constructed as shown in Figure 3-4.8 B with bars in an upright or inclined position. The bars should be spaced at one-half "D," where D is the diameter or the smallest dimension of a non-circular culvert. Debris racks should be placed far enough away (approximately 4D) from the culvert entrance so that debris will not block the pipe itself. The debris will frequently become entangled in the rack making removal very difficult, so some thought must be given to placing the rack so it is accessible for necessary maintenance.

Debris Rack
Figure 3-4.8B
3. Debris Basin (see Figure 3-4.8C)

A debris basin decreases the stream velocity immediately upstream of a culvert inlet, allowing transported sediments to settle out while providing a location for floating debris is collected. A debris basin is generally constructed by excavating a volume of material from below the culvert inlet, as shown in Figure 3-4.8C. The dimensions of a debris basin will vary, depending on the debris history of a site, the potential for future debris, and topographical constraints. It is recommended that the designer consult with the Region Hydraulics Section/Contact to determine the appropriate basin size for a given location. The periodic cleaning of a debris basin is made much easier by providing an access road for maintenance equipment. The cleaning interval needs to be determined from experience depending on the size of the basin provided and the frequency of storms. Debris basins can be quite effective when adequately sized, however, continual maintenance is required regardless of how large they are made.

PLAN

ELEVATION
Debris Basin
Figure 3-4.8C

4. Emergency Bypass Culvert

In situations where a culvert is placed with a very high fill (over 40 feet (12 $\mathrm{m})$) on a stream with significant debris problems, it may be necessary to install an emergency bypass culvert. A plugged culvert in a high embankment can impound a large amount of water. A sudden failure of a high fill is possible, which can result in danger to the downstream property owners and the roadway users. An emergency bypass culvert will limit the level of impounded water to a reasonable amount. The diameter of the bypass culvert should be about 50 percent to 60 percent of the diameter of the main culvert. If possible, the bypass culvert should be placed out of the main flow path so that the risk of it also plugging due to debris is minimized. The invert
of the bypass culvert should be placed no more than 5 to 10 feet above the crown of the main culvert, or to the elevation of an acceptable ponding level.
5. Debris Spillway

Regardless of the efforts made to divert debris from entering a culvert, failures do occur and water could eventually overflow the roadway causing a complete washout of the embankment. The designer should always provide an ample primary culvert system, and in problem areas (e.g., high debris, steep side slopes), some consideration should be given to a secondary or auxiliary drainage facility. This might consist of allowing water to flow over the roadway and spilling over a more stable portion of the embankment without causing complete loss of the embankment.

These spillways should be constructed on, or lined with, material capable of resisting erosion. At some sites the overflow water may have to be directed several hundred feet from its origin in order to find a safe and natural place to spill the water without harm. These secondary drainage paths should always be kept in mind as they can sometimes be utilized at little or no additional cost.

3-5 Miscellaneous Culvert Design Considerations

3-5.1 Multiple Culvert Openings

The use of multiple culvert openings is discouraged. It has been observed that this type of system rarely functions as designed because one or more barrels tend to plug with debris. This decreases the effective conveyance capability of the system and can result in failure. Multiple openings have generally been used in situations where very little vertical distance was available from the roadway to the culvert invert. In order to pass the design flow, several identical culverts would have to be placed side by side. New products, such as low profile arches and three-sided box structures, are now available that can provide significant horizontal span lengths while minimizing the necessary vertical rise. The HQ Hydraulics Office recommends low profile arches or three-sided box structures be considered for use in those type of situations. See Chapter 8 for more information related to arches and three-sided box structures. It is permissible to design a culvert system such that there is a primary conveyance culvert and an emergency bypass culvert placed at a different elevation and to one side of the
main channel. This type of design can be effective in situations where significant amounts of woody debris are expected.

3-5.2 Camber

When a culvert is installed under moderate to high fills 30 to 60 feet (10 to 20 m) or higher, there may be greater settlement of the fill under the center of the roadway than at the sides. This occurs because at the culvert ends there is very little fill while at the centerline of the roadway, the maximum fill occurs. The difference in surcharge pressure at the elevation of the culvert may cause differential settlement of the fill and can create a low point in the culvert profile. In order to correct for the differential settlement, a culvert can be constructed with a slight upward curve in the profile, or camber, as shown in Figure 3-5.2. The camber is built into the culvert during installation by laying the upstream half of the culvert on a flat grade and the downstream half on a steeper grade in order to obtain the design grade after settlement. The amount of expected camber can be determined by the HQ Materials Lab and must be shown on the appropriate profile sheet in the contract plans.

Camber Under High Fills

Figure 3-5.2

3-5.5 Angle Points

It is recommended that the slope of a culvert remain constant throughout the entire length of the culvert. This is generally easy to accomplish in new embankments. However, in situations where existing roadways are to be widened, it may be necessary to extend an existing culvert at a different slope. The location where the slope changes is referred to as the angle point.

If the new culvert is to be placed at a flatter grade than the existing culvert, it is recommended that a manhole be incorporated into the design at the angle point as shown in Figure 3-5.5A. The change in slope tends to create a location in the culvert that will catch debris and sediment. Providing access with a manhole will facilitate culvert maintenance.

If the new culvert is to be placed at a steeper slope than the existing culvert, the manhole can be eliminated at the angle point if debris and sedimentation have not historically been a concern at the existing culvert.

Culvert Angle Point
Figure 3-5.5

3-5.6 Upstream Ponding

The culvert design methodology presented in Section 3-3 makes the assumption that the headwater required to pass a given flow through a culvert will be allowed to fully develop upstream of the culvert inlet. Any peak flow attenuation provided by ponding upstream of the culvert inlet is ignored. In reality, if a large enough area upstream of the inlet is available for ponding, the design headwater will not occur and the culvert will not pass the full design flow. However, by ignoring any ponding effects, the culvert design is simplified and the final results are conservative. Most culverts should be designed using these assumptions.

If it is determined that the ponding characteristics of the area upstream of the inlet need to be taken into consideration, the calculation of flow becomes a flood routing problem which entails a more detailed study. Essentially, the area upstream of the inlet acts as a detention pond and the culvert acts as an outlet
structure. The culvert can be designed utilizing flood routing concepts similar to designing a storm water detention pond, but that methodology is beyond the scope of this manual. Since the need for this type of culvert design is rare, the Region Hydraulics Engineer or HQ Hydraulics Office should be contacted for further assistance.

3-5.7 Misc Design Considerations - Siphons

A siphon is a water conveyance conduit, which operates at subatmospheric pressure over part of its length. Some culverts act as true siphons under certain headwater and tailwater conditions, but culverts are rarely designed with that intention. Figure 3-5.7.1 shows two culverts acting as true siphons. If a designer determines a siphon is appropriate for a project, the designer should contact the Region Hydraulics Office for further guidance.

Culverts Acting as Siphons
Figure 3-5.7.1

Contents

Chapter 4 Open Channel Flow 1
4-1 General 1
4-2 Determining Channel Velocities 2
4-2.1 Field Measurement 3
4-2.2 Manning's Equation 4
4-2.2.1 Hand Calculations 5
4-2.2.1.1 Examples - Manning's Equation using Hand Calculations 6
4-2.2.2 Field Slope Measurements 8
4-2.2.3 Manning's Equation in Sections 9
4-2.2.3.1 Example Manning's Equation in Sections. 9
4-3 Roadside Ditch Design Criteria 11
4-4 Critical Depth 11
4-4.1 Example Critical Depth in a Rectangular Channel 13
4-4.2 Example Critical Depth in a Triangular Channel 13
4-4.3 Example Critical Depth in a Trapezoidal Channel 14
4-4.3 Example Critical Depth in a Circular Shaped Channel 14
4-5 River Backwater Analysis 14
4-6 River Stabilization 16
4-6.1 Bank Barbs 17
4-6.1.1 Riprap Sizing for Bank Barbs 20
4-6.1.1.1 Example Riprap Sizing for River Barb 21
4-6.1.2 Riprap Placement for Bank Barbs 22
4-6.1.3 Vegetation. 22
4-6.2 Drop Structures 23
4-6.3 Riprap Bank Protection 25
4-6.3.1 Riprap Sizing for Bank Protection 26
4-6.3.1.1 Example 1 Riprap Sizing for Bank Protection 27
4-6.3.1.2 Example 2 Riprap Sizing for Bank Protection 28
4-6.3.2 Placement of Riprap Bank Protection 29
4-6.3.3 Scour Analysis for Bridges and Three Sided Culverts 30
4-6.4 Engineered Log Jams and Large Woody Debris 31
4-7 Downstream Analysis 32
4-7.1 Downstream Analysis Reports 33
4-7.2 Review of Resources 33
4-7.3 Inspection of Drainage Conveyance System 34
4-7.4 Analysis of Off Site Affects 34
4-8 Weirs 35
4-8.1 Rectangular Weirs 36
4-8.2 V-Notch Weirs. 37
4-8.3 Trapezoidal or Cipoletti Weirs 37
Appendix 4-1 Manning's Roughness Coefficients (n) 1

4-1 General

An open channel is a watercourse, which allows part of the flow to be exposed to the atmosphere. This type of channel includes rivers, culverts, stormwater systems that flow by gravity, roadside ditches, and roadway gutters. Open channel flow design criteria are used in several areas of transportation design including:

1. River channel changes.
2. Stream bank protection.
3. Partially full-flow culverts.
4. Roadside ditches.
5. Bridge design.
6. Down Stream Analysis
7. Weirs for irrigation.

Proper design requires that open channels have sufficient hydraulic capacity to convey the flow of the design storm. In the case of earth lined channels or river channels, bank protection is also required if the velocities are high enough to cause erosion or scouring.

River stabilization maybe necessary for highly erosive, high-energy rivers, to help the river to dissipate some of its energy and stabilizes the river banks and channel bottom. There are several rock structures that can be used to dissipate energy, this chapter will focus on two types: bank barbs and drop structures. The success of the rock structures or rock bank protection is dependent on the ability of the rock to withstand the forces of the river and thus it is of great importance to properly size the rocks used. The methodology for sizing rocks used in river stabilization is described in section 4-6.

The flow capacity of a culvert is often dependent on the channel up and downstream from that culvert. For example, the tailwater level is often controlled by the hydraulic capacity of the channel downstream of the culvert. Knowing the flow capacity of the
downstream channel, open channel flow equations can be applied to a typical channel cross section to adequately determine the depth of flow in the downstream channel. This depth can then be used in the analysis of the culvert hydraulic capacity and is further discussed in section 4-4.

Shallow grass lined open channels can contribute to the cleaning of stormwater runoff before it reaches a receiving body. When possible, the designer should route stormwater runoff through open, grass lined ditches, also known as biofiltration swales. When road silts are permitted to settle out, they usually take with them a significant portion of other pollutants. The difference between a ditch and a bioswale is defined in section 4-3 along with the design criteria for ditches. The design criteria for biofiltration swales can be found in Chapter 5 of Washington State Department of Transportation (WSDOT) Highway Runoff Manual.

A downstream analysis identifies and evaluates the impacts, if any, a project will have on the hydraulic conveyance system downstream of the project site. The analysis should be broken into three sections: 1) Review of Resources; 2) Inspection of Drainage Conveyance Systems in the Site Area; and 3) Analysis of offsite effects. See section 4-7 of this chapter and the Hydraulic Report Outline in Chapter 1.

Measurement of flow in channels can be difficult because of the non-uniform channel dimensions and variations in velocities across the channel. Weirs allow water to be routed through the structure of known dimension, permitting flow rates to be measured as a function of depth of flow through the structure. Weirs for irrigation ditches are discussed in section 4-8.

4-2 Determining Channel Velocities

In open channel flow, the volume of flow and the rate at which flow travels are useful in designing the channel. For the purposes of this manual, the determination of the flow rate in the channel, also known as discharge, are based on the continuity of flow equation or equation 4-1 below. This equation states that the discharge (Q) is equivalent to the product of the channel velocity (V) and the area of flow (A).

$$
\begin{align*}
& \mathrm{Q}=\mathrm{V} \text { A } \tag{4-1}\\
& \text { Where: } \quad \mathrm{Q}=\text { discharge, } \mathrm{cfs}\left(\mathrm{~m}^{3} / \mathrm{s}\right) \\
& \mathrm{V}=\text { velocity, } \mathrm{ft} / \mathrm{s}(\mathrm{~m} / \mathrm{s}) \\
& \mathrm{A}=\text { flow area, } \mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)
\end{align*}
$$

In some situations, the flow area of a channel is known. If it is not, the flow area must be calculated using an iterative procedure described in Section 4-2.2. Computer programs and charts from FHWA Hydraulic Design Series No. 3 are also available for determining channel geometry or velocities. Channel velocities can either be measured or calculated using Manning's Equation as described below.

4-2.1 Field Measurement

Because channel velocities are used in determining flow rates, measurements of the channel velocity taken during periods of high flow are of most interest. The designer needs to consider the high flows and ensure that the channel design can provide the required capacity. The velocity can be estimated from field measurements by using one of the following three methods. The first two methods require the use of a current meter to measure velocities at any given depth in the channel.

Method 1 - The first method uses surveyed cross sections of the river. At a given cross section, the section is divided into subsections (up to 10 or 20 subsections for best accuracy) as shown in Figure 4-2.1. A change in depth or a change in ground cover is the best place to end a subsection. The current meter is used at each subsection to measure the velocities at 0.2 times the channel depth and at 0.8 times the channel depth. For example, if the channel was only one foot deep in the first subsection, the current meter should be lowered into the water to 0.2 ft from the channel bottom and used to read the velocity at this location. The designer would then raise the current meter to 0.8 ft from the channel bottom and read the velocity at that location. The velocity of that subsection of the river is the average of these two values. The process is repeated for each of the subsections.

Determining Velocities by Subsections
Figure 4-2.1

Method 2 - The second method requires, contour maps or surveyed cross sections of the river. Similar to the first method, the cross section of the river is divided into subsections. However, in the second method, the velocity is only measured at a distance from the channel bottom equivalent to 0.4 times the channel depth. This is considered to be the average velocity for that subsection of the river. A reading is taken at each subsection. This method is slightly less accurate than Method 1.

Method 3 - The third method is the least accurate of the three procedures. At the point of interest, the designer should measure the velocity at the surface of the stream. If no current meter is available, throwing a float in the water can do this and observing the time it takes to travel a known distance. The surface velocity is the known distance divided by the time it took to travel that distance. The average velocity is generally taken to be 0.85 times this surface velocity.

Once the velocity of each subsection is measured, the flow rate for each of the subsections is calculated as the product of the area of the subsection and its measured velocity. Summing the flow rates for each subsection will determine the total flow rate, or hydraulic capacity at this cross section of the river.

4-2.2 Manning's Equation

When actual stream velocity measurements are not available, the velocity can be calculated using Manning's Equation. Manning's Equation is an open channel flow equation used to find either the depth of flow or the velocity in the channel where the channel roughness, slope, depth, and shape remain constant (Steady Uniform Flow). The depth of flow using Manning's Equation is referred to as the normal depth and the velocity is referred to as the normal velocity.

The geometry involved in solving Manning's Equation can be complex and consequently, a direct mathematical solution for some channel shapes is not possible. Instead, a trial and error approach may be necessary. Various design tables are available to assist in these solutions as well as several personal computer programs. Information regarding sample programs is available from the Head Quarters (HQ) Hydraulics Office.

4-2.2.1 Hand Calculations

The solution for velocity in an open channel must conform to the following formula:

$$
\begin{align*}
& \mathrm{V}=\frac{1.486}{\mathrm{n}} \mathrm{R}^{2 / 3} \sqrt{\mathrm{~S}} \text { (English Units) } \tag{4-2}\\
& \mathrm{V}=\frac{1}{\mathrm{n}} \mathrm{R}^{2 / 3} \sqrt{\mathrm{~S}} \text { (Metric Units) }
\end{align*}
$$

Where:

$$
\begin{aligned}
& \mathrm{V}=\text { Mean velocity in channel, } \mathrm{ft} / \mathrm{s}(\mathrm{~m} / \mathrm{s}) \\
& \mathrm{n}=\text { Manning's roughness coefficient (see Appendix 4-1) } \\
& \mathrm{S}=\text { Channel slope }- \text { steady and uniform flows occurs, } \mathrm{ft} / \mathrm{ft}(\mathrm{~m} / \mathrm{m})
\end{aligned}
$$

$$
\mathrm{R}=\text { Hydraulic radius, } \mathrm{ft}(\mathrm{~m})
$$

$$
\begin{align*}
\mathrm{R}= & \mathrm{A} / \mathrm{WP} \tag{4-3}\\
\mathrm{~A}= & \text { Flow Area of the cross section of water, } \mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right) \\
& \text { See Figure 4-2.2.1 for additional area equations } \\
\mathrm{WP}= & \text { Wetted perimeter, } \mathrm{ft}(\mathrm{~m}) \\
\mathrm{WP}= & \mathrm{d}+\mathrm{B}+\mathrm{d} \tag{4-4}
\end{align*}
$$

See Figure 4-2.2.1 for additional WP equations
The hydraulic radius is the ratio of flow area to the wetted perimeter where the wetted perimeter is the length of channel cross section that is in contact with the water. For full flow circular pipes, the hydraulic radius is one-fourth the diameter of the pipe. In relatively flat, shallow channels, where $B>10 \mathrm{~d}$, the wetted perimeter can be approximated by the width of the channel. As a result, the hydraulic radius can be approximated as the depth of water, $\mathrm{R} \cong \mathrm{d}$.

$$
R=\frac{A}{W P}=\frac{B d}{B+2 d}=\frac{B d}{B}=d
$$

When the depth of flow is known, the mathematical solution is simple. The section properties area (A) and wetted perimeter (WP) can be determined and put into the equation to find velocity (V).

The flow rate, or discharge can then be found by equation 4-1:

$$
\mathrm{Q}=\mathrm{VA}
$$

More frequently, the designer knows the discharge but the depth of flow in the channel must be determined. Since Manning's Equation cannot solve for the depth of a trapezoidal channel directly, a method of successive approximations must be used. The designer must estimate the depth, determine the section properties, and finally solve for the discharge. If the discharge so derived is too high, the designer must then revise the estimated depth downward and recalculate the discharge. This process is repeated until the correct discharge is found within sufficient accuracy (3 to 5 percent). This method can be time consuming. It is recommended that a programmable calculator or computer be used to aid in the computations.

Regardless of whether the depth is known or needs to be calculated, the designer must verify that the normal depth of the channel is either greater than or less than the critical depth of the channel as described in section 4-4 of this Chapter.

4-2.2.1.1 Examples - Manning's Equation using Hand Calculations

For the following hand calculation examples using Manning equations, designers should use Figure 4-2.2.1, Geometric Elements of Channel Sections.

Example 1

A trapezoidal channel with $1.75: 1$ side slopes and a 6.5 ft bottom width is flowing 4 ft deep. The channel has a bottom slope of $0.004 \mathrm{ft} / \mathrm{ft}$ for a distance of several hundred feet. What is the discharge of the riprap lined channel?

Since this is a small channel with riprap, the roughness coefficient of 0.040 is chosen from Appendix 4-1.

$$
\begin{align*}
& \mathrm{A}=(\mathrm{b}+\mathrm{ZD}) \mathrm{D}=[6.5 \mathrm{ft}+1.75(4 \mathrm{ft})] 4 \mathrm{ft}=54 \mathrm{ft}^{2}(4-5) \\
& \mathrm{WP}=\mathrm{b}+2 \mathrm{D} \sqrt{1+\mathrm{Z}^{2}}=6.5 \mathrm{ft}+2(4) \sqrt{1+1.75^{2}}=22.6 \mathrm{ft} \tag{4-4}\\
& \mathrm{R}=\mathrm{A} / \mathrm{WP}=54 \mathrm{ft}^{2} / 22.6 \mathrm{ft}=2.4 \mathrm{ft}(4-3) \\
& \mathrm{V}=\frac{1.486}{\mathrm{n}} \mathrm{R}^{2 / 3} \sqrt{\mathrm{~S}}=\frac{1.486}{0.04}(2.4)^{2 / 3} \sqrt{0.004}=4.2 \mathrm{ft} / \mathrm{s}(4-2) \\
& \mathrm{Q}=\mathrm{VA}=4.2 \mathrm{ft} / \mathrm{s}\left(54 \mathrm{ft}^{2}\right)=226.8 \mathrm{cfs}(4-1)
\end{align*}
$$

Example 2

How deep would the channel described above flow if the discharge is 600 cfs?
The designer needs to assume various depths and solve for Q using equation 4-1. It may be helpful to draw a graph to aid in choosing the next depth. Once a Q both
below and above the given discharge, in this case 600 cfs , is determined the depth can be found using interpolation as shown below.

$$
\begin{equation*}
\mathrm{Q}=\mathrm{VA} \tag{4-1}
\end{equation*}
$$

Next substitute equation 4-2 in for the velocity and the appropriate area from Figure 4-2.2.1.

$$
\mathrm{Q}=((\mathrm{b}+\mathrm{ZD}) \mathrm{D}) \times\left(\frac{1}{\mathrm{n}} \mathrm{R}^{2 / 3} \sqrt{\mathrm{~S}}\right)
$$

Assumed D	Calculated Q
4 ft	226.8 cfs
6.6 ft	655.1 cfs
6.2 ft	581.0 cfs
6.4 ft	611.8 cfs

Interpolate for depth (d) at discharge 600 cfs:

1. Locate two discharge points, one above and one below 600 cfs , and note the depth.

$$
\begin{array}{ll}
\mathrm{Q}=581.0 \mathrm{cfs} & \mathrm{~d}=6.2 \mathrm{ft} \\
\mathrm{Q}=611.8 \mathrm{cfs} & \mathrm{~d}=6.4 \mathrm{ft}
\end{array}
$$

2. When interpolation is used, it is assumed that there is a linear relationship between the points. In other words if a straight line was drawn, all 3 points (or discharge values Q) could be located on that line. If there is an unknown coordinate for one of the points, it can be found by finding the slope of the line, as shown below:

$$
\frac{(6.4 \mathrm{ft}-6.2 \mathrm{ft})}{\left(611.8 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}-581.0 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}\right)}=0.00649 \frac{\mathrm{ft}}{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}
$$

3. Once the slope is known, the depth can be determined at 600 cfs :

$$
\begin{aligned}
& \left(600 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}-581.0 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}\right) \times 0.00649 \frac{\mathrm{ft}}{\frac{\mathrm{ft}^{3}}{\mathrm{~s}}}=0.12 \\
& \mathrm{~d}=6.2 \mathrm{ft}+0.12 \mathrm{ft}=6.32 \mathrm{ft}
\end{aligned}
$$

4. Finally, the depth should be verified by rerunning the analysis at $\mathrm{d}=6.32 \mathrm{ft}$ to verify Q is 600 cfs . Calculations accurate to ± 3 percent are sufficient.

Cross	Area, A (Equation 4-5)	Wetted Perimeter, WP (Equation 4-4)
	BD B +2 D	
Trapezoid (Equal side slopes)	(b+ZD)D	$b+2 \mathrm{D} \sqrt{1+\mathrm{Z}^{2}}$
Trapezoid (unequal side slopes)	$\frac{\mathrm{D}^{2}}{2}\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)+\mathrm{Db}$	$\mathrm{b}+\mathrm{D}\left(\sqrt{1+\mathrm{Z}_{1}^{2}}+\sqrt{1+\mathrm{Z}_{2}^{2}}\right)$
	ZD ${ }^{2}$	$2 \mathrm{D} \sqrt{1+\mathrm{Z}^{2}}$

Reference: VT Chow "Open Channel Hydraulics" for a more complete table of geometric elements.

Geometric Elements of Channel Sections

Figure 4-2.2.1

4-2.2.2 Field Slope Measurements

By definition, slope is rise over run (or fall) per unit length along the channel centerline or thalweg. Slope is the vertical drop in the river channel divided by the horizontal distance measured along the thalweg of a specific reach. The vertical drop should be measured from the water surface at the top-of-riffle (end of pool) to the next top-of-riffle to get an accurate representation of the slope in that reach.

Field Slope Measurement
Figure 4-2.2.2

4-2.2.3 Manning's Equation in Sections

Manning's method by sections should be used when the channel is distinctly different from the overbank; varying depths and roughness values. Channels and flood plains have a common occurrence of this type. If an average depth or Manning's value were used for this situation instead the results would be less accurate. The following example illustrates this situation.

4-2.2.3.1 Example Manning's Equation in Sections

Determine the velocity and discharge in each of the three subsections shown in Figure 4-2.2.3.1 The river slope is $0.003 \mathrm{ft} / \mathrm{ft}$. The ground cover was observed during a field visit and the corresponding Manning's Roughness values were found in Appendix 4-1. Both the ground cover and Manning's values are noted below.

Manning's Equation in Sections
Figure 4-2.2.3.1

Subsections Method:	Section 1	Section 2	Section 3
Top Width, T	200 ft	150 ft	65 ft
Ground Cover	Trees	channel	Rock
Manning's Roughness	0.0900 .03	50.06	0
Flow Depth, D	5 ft	15 ft	3 ft
Area, A	$1000 \mathrm{ft}^{2}$	2250	$\mathrm{ft}^{2} 195$
Hydraulic Radius, R	5 ft	15 ft	$3 \mathrm{ft}^{2}$
Velocity, V	$2.64 \mathrm{ft} / \mathrm{st}$	$14.3 \mathrm{ft} / \mathrm{s}$	$2.82 \mathrm{ft} / \mathrm{s}$
Discharge, Q	2640 cfs	32175 cfs	550 cfs

The area for each section was found using the equation for a rectangle from Figure 42.2.1. The Hydraulic Radius was set equal to the depth, as noted in section 4-2.2.1 this can be done when the width of the channel is more than 10 times the depth. Using equation 4-2 the velocity was determined and finally the discharge was found with equation 4-1.The total flow rate is equal to the sum of the discharges from each subsection or $35,363 \mathrm{cfs}\left(912 \mathrm{~m}^{3} / \mathrm{s}\right)$, which would be the correct value for the given information.

To attempt this same calculation using a constant roughness coefficient, the designer would have to choose between several methods, which take a weighted average of the n -values. Taking a weighted average with respect to the subsection widths or subsection area may appear to be reasonable, but it will not yield a correct answer. The subsection method shown above is the only technically correct way to analyze this type of channel flow. However, this application of Manning's Equation will not yield the most accurate answer. In this situation, a backwater analysis, described in

Section 4-4, should be performed. Notice that the weighted average n -value is difficult to choose and that the average velocity does not give an accurate picture as the first method described in Section 4-2.1 Field Measurement.

4-3 Roadside Ditch Design Criteria

Roadside ditches are generally located alongside uncurbed roadways with the primary purpose of conveying runoff away from the roadway. Ditches should be designed to convey the 10 -year recurrence interval with a 0.5 -foot freeboard and a maximum side slope of $2: 1$. The preferred cross section of a ditch is trapezoidal however a ' V ' ditch can also be used where right of way is limited and or the design requirements can still be met. In those cases where the grade is flat, preventing adequate freeboard, the depth of channel should still be sufficient to remove the water without saturating the pavement subgrade. To maintain the integrity of the channel, ditches are usually lined with grass, however this type of lining is only acceptable for grades up to 6% and with a maximum velocity of 5 feet per second. For higher velocities and channel slopes, more protective channel linings are required; see HDS \#4 Introduction to Highway Drainage or section 9-33 of the Standard Specifications for more information.

Ditches should not be confused with Biofiltration Swales. In addition to collecting and conveying drainage, swales also provide runoff treatment by filtering out sediment. See Chapter 5 of the WSDOT Highway Runoff Manual for design guidance for Biofiltration Swales.

4-4 Critical Depth

Before finalizing a channel design, the designer must verify that the normal depth of a channel (see section 4-2.2) is either greater than or less than the critical depth. Critical depth is the depth of water at critical flow, a very unstable condition where the flow is turbulent and a slight change in the specific energy, the sum of the flow depth and velocity head, could cause a significant rise or fall in the depth of flow. Critical flow is also the dividing point between the subcritical flow regime (tranquil flow), where normal depth is greater than critical depth, and the supercritical flow regime (rapid flow), where normal depth is less than critical depth.

Critical flow tends to occur when passing through an excessive contraction, either vertical or horizontal, before the water is discharged into an area where the flow is not restricted. A characteristic of critical depth flow is often a series of surface undulations over a very short stretch of channel. The designer should be aware of the
following areas where critical flow could occur: culverts, bridges, and near the brink of an overfall.

A discussion of specific energy is beyond the scope of this manual. The designer should refer to any open channel reference text for further information. Critical depth can be found by the following formulas and demonstrated in the examples that follow:

1. Rectangular Channel

$$
\begin{equation*}
\mathrm{D}_{\mathrm{C}}=\left[\frac{\mathrm{C}_{1} \mathrm{Q}}{\mathrm{~b}}\right]^{2 / 3} \tag{4-6a}
\end{equation*}
$$

Where $\quad \mathrm{C}_{1}=$ is 0.176 (English units) or 0.319 (metric units)

2. Triangular Channel

$$
\begin{equation*}
\mathrm{D}_{\mathrm{C}}=\mathrm{C}_{2}\left[\frac{\mathrm{Q}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}\right]^{2 / 5} \tag{4-6b}
\end{equation*}
$$

Where $\quad \mathrm{C}_{2}=$ is 0.757 (English units) or 0.96 (metric units)

3. Trapezoidal Channel

A trial and error or successive approximations approach is required with equation 4-7a when Dc is unknown:

$$
\begin{equation*}
\mathrm{Q}=\left[\frac{\mathrm{gA}^{3}}{\mathrm{~T}}\right]^{1 / 2} \tag{4-7a}
\end{equation*}
$$

Where $\quad \mathrm{g}=$ is the gravitational constant, $32.2 \mathrm{ft} / \mathrm{s}^{2}$ (English units) or 9.81 $\mathrm{m} / \mathrm{s}^{2}$ (metric units)
$\mathrm{A}=$ can be found using equation 4-5 in Figure 4-2.2.1

4. Circular Shaped Channel

As with equation 4-7a, a successive approximation approach is required for equation 4-7b, when solving for Dc.

$$
\begin{equation*}
\mathrm{Q}=\left[\frac{\mathrm{gA}^{3}}{\mathrm{~T}}\right]^{1 / 2} \tag{4-7b}
\end{equation*}
$$

Where $\quad \mathrm{g}=$ is the gravitational constant, $32.2 \mathrm{ft} / \mathrm{s} 2$ (English units) or $9.81 \mathrm{~m} / \mathrm{s} 2$ (metric units)

In lieu of the trial and error approach with equation 4-7b, designers can instead use equation 4-6c for an approximate solution:
$\mathrm{D}_{\mathrm{c}}=\mathrm{C}_{3} \frac{\mathrm{Q}^{0.5}}{\mathrm{D}^{0.25}}(4-6 \mathrm{c})$
Where $\quad \mathrm{C} 3=0.42$ (English units) or 0.562 (metric units)

4-4.1 Example Critical Depth in a Rectangular Channel

Find the critical depth in a rectangular channel 15 ft bottom width and vertical sidewalls using equation $4-6 \mathrm{a}$. The discharge is $600 \mathrm{ft}^{3} / \mathrm{s}$.

$$
\mathrm{D}_{\mathrm{c}}=\left[\frac{\mathrm{C}_{1} \mathrm{Q}}{\mathrm{~b}}\right]^{2 / 3}=\left[\frac{0.176\left(600 \mathrm{ft}^{3} / \mathrm{s}\right)}{15}\right]^{2 / 3}=3.67 \mathrm{ft}
$$

4-4.2 Example Critical Depth in a Triangular Channel

Find the critical depth in a triangular shaped channel with 1.75:1 sideslopes using equation $4-6 \mathrm{~b}$. The discharge is $890 \mathrm{ft}^{3} / \mathrm{s}$

$$
\mathrm{D}_{\mathrm{c}}=C_{2}\left[\frac{\mathrm{Q}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}\right]^{2 / 5}=0.757\left[\frac{890 \mathrm{ft}^{3} / \mathrm{s}}{1.75+1.75}\right]^{2 / 5} 6.94 \mathrm{ft}
$$

4-4.3 Example Critical Depth in a Trapezoidal Channel

Find the critical depth in a trapezoidal channel that has a 10 ft bottom width and $2: 1$ side slopes for a discharge of 1200 cfs . Use equation $4-7 \mathrm{~b}$ to solve for Q using a trial and error approach with different depths. Repeat the process until Q is close to 1200 cfs. A programmable calculator is strongly recommended.

$$
\mathrm{Q}=\left[\frac{\mathrm{gA}^{3}}{\mathrm{~T}}\right]^{1 / 2}
$$

Assumed D (ft)	A $\left(\mathrm{ft}^{2}\right)$	T (ft)	$\mathrm{Q}=\left[\frac{\mathrm{gA}^{3}}{\mathrm{~T}}\right]^{1 / 2}$
472		26	680
6132		34	1476
5.2106		30.8	1116
5.4112.	3	31.60	1201

The critical depth for the given channel and discharge is approximately 5.4 ft (1.65m).

4-4.3 Example Critical Depth in a Circular Shaped Channel

Find the critical depth for a 3.5 ft diameter pipe flowing with 18 cfs and then for 180 cfs using equation 4-6c.

For 18 cfs:

$$
\mathrm{D}_{\mathrm{C}}=\mathrm{C}_{3} \frac{\mathrm{Q}^{0.5}}{\mathrm{D}^{0.25}}=0.42 \frac{(18 \mathrm{cfs})^{0.5}}{(3.5 \mathrm{ft})^{0.25}}=1.3 \mathrm{ft}
$$

For 180 cfs:

$$
\mathrm{D}_{\mathrm{C}}=\mathrm{C}_{3} \frac{\mathrm{Q}^{0.5}}{\mathrm{D}^{0.25}}=0.42 \frac{(180 \mathrm{cfs})^{0.5}}{(3.5 \mathrm{ft})^{0.25}}=4.1 \mathrm{ft}
$$

Note that 4.1 ft is greater than the diameter and therefore has no significance for open channel. The pipe would be submerged and would act as an orifice instead of an open channel.

4-5 River Backwater Analysis

Natural river channels tend to be highly irregular in shape so a simple analysis using Manning's Equation, while helpful for making an approximation, is not sufficiently
accurate to determine a river water surface profile. Per Chapter 1, Section 1-2 of this manual, the HQ Hydraulics Office is responsible for computing water surface profiles and has several computer programs to calculate the water surface profile of natural river channels. The computation of the water surface profile is called a backwater analysis. The purpose of this section is to state when a backwater analysis is necessary as well as to summarize the minimum design requirements for the analysis and provide the project office with a list of field information required for HQ Hydraulics to perform an analysis.

A backwater analysis is performed when designing a bridge that crosses a river designated as a FEMA regulatory floodway. WSDOT is required by federal mandate to design these bridges to accommodate the 100 -year storm event. And it is desirable to maintain a 3 'foot vertical clearance between the bottom of the bridge and the 100year water surface elevation. The water surface elevations for the 100 -year and $500-$ year water surface profiles should be shown on the plans.

A backwater analysis can also be useful in the design of culverts. Computing the water surface profile can help the designer determine if the culvert is flowing under inlet, or outlet control. For additional information about backwater analyses, see FHWA's Hydraulic Design Series No. 1, Hydraulics of Bridge Waterways. The region must provide the following information to the HQ Hydraulics Office to complete a river backwater analysis.

1. A contour map of the project site with $1 \mathrm{ft}(0.25 \mathrm{~m})$ or $2 \mathrm{ft}(0.50 \mathrm{~m})$ intervals is required. The map should extend from at least one bridge length downstream of the bridge to any point of concern upstream with a minimum distance upstream of two bridge lengths and two meander loops. The map should include all of the area within the 100 -year flood plain. All bridge and unique attributes of the project area should be identified.
2. The Manning's roughness coefficients must be established for all parts of the river within the project area. HQ Hydraulics Office will need photographs of the channel bed and stream bank along the reach of interest to determine the appropriate channel roughness. Photos are especially important in areas where ground cover changes.

To prevent subsequent difficulties in the backwater analysis, the HQ Hydraulics Office should be contacted to determine the necessary parameters.

4-6 River Stabilization

The rivers found in Washington are still very young in a geological sense and will tend to move laterally across the flood plain from time to time until equilibrium is reached. Whenever a river is adjacent to a highway, the designer should consider the possible impacts of the river on the highway or bridge.

In a natural setting, a river is exposed to several channel characteristics, which help to dissipate some of its energy. Such characteristics include channel roughness, meanders, vegetation, obstructions like rocks or fallen trees, drops in the channel bottom, and changes in the channel cross section. The meander provides an additional length of channel, which allows the river to expend more energy for a given drop in elevation. Vegetation increases the roughness of the channel causing the flow to dissipate more of its energy in order to flow through it. The river utilizes both increased channel length from meanders and increased channel roughness from vegetation to dissipate some of its energy during high runoff periods. When a river overtops its banks, it begins to utilize its flood plains. The flow is either stored in the overbank storage provided by the flood plain or returns to the river downstream. Compared to the flow in the river, the flow returning to the river has been slowed significantly due to the increased roughness and travel length.

Inevitably, roadways are found adjacent to rivers because roadway construction costs are minimized when roadways are constructed through level terrain. At times, roadways built in the flood plain confine the river to one side of the roadway, reducing its channel length. At other times, rivers are confined to their channel to minimize flooding of adjacent properties. As a result, rivers are unable to utilize overbank storage areas. These two situations produce rivers that are highly erosive because the river can no longer dissipate the same amount of energy that was dissipated when the river was not confined to a certain area.

These highly erosive rivers have caused significant damages to the state's highways and bridges. Many roadway embankments have been damaged and bridge piers have been undermined, leading to numerous road closures and high replacement costs. Due to the extensive flooding experienced in the 1990s, more attention has been given to stabilizing Washington Rivers and minimizing damages.

For highly erosive, high-energy rivers, structures constructed in the river's channel are beneficial because they help the river to dissipate some of its energy and stabilize its banks and channel bottom. There are several rock structures that can be used to dissipate energy. Two structures described in the following sections include bank
barbs and drop structures. Guide banks and spurs are other examples of in-channel rock structures. Detailed descriptions of guide banks and spurs are provided in the Hydraulic Engineering Circular No. 20 - Stream Stability at Highway Structures (Ohttp://www.fhwa.dot.gov/engineering/hydraulics/software.cfm). When the use of these rock structures is not feasible, riprap bank protection can be used and is described further in Section 4-6.3. See Section 4-6.1 and Section 4-6.2 for feasible applications for bank barbs and rock drop structures. For further guidance on Barbs, designers can consult the following WSDOT research document: Investigation of Flow and Local Scour Characteristics around a partially submerged permeable WSDOT Barb, WA-RD581.1 Feb 2004

The success of the rock structures or rock bank protection is dependent on the ability of the rock to withstand the forces of the river. As a result, it is of great importance to properly size the rocks used for barbs, drop structures, and bank protection. Although the procedure for sizing the rocks used for barbs and drop structures are similar, riprap sizing for bank protection is not. The methodology for sizing rocks used in each of these structures is described in the individual sections.

For the purposes of this manual, river stabilization techniques include in-channel hydraulic structures only. Bioengineering is the combination of these structures with vegetation, or only densely vegetated streambank projects, which provide erosion control, fish habitat, and other benefits. The designer should consult WSDOT's Design Manual Soil Bioengineering Chapter for detailed information about bioengineering. Additionally, the Stream Habitat Restoration Guidelines (SHRG) provides guidance not just for stabilizing rivers, but also considering techniques that provide a natural stream restoration, rehabilitating aquatic and riparian ecosystems. (Ohttp://wdfw.wa.gov/hab/ahg/shrg/index.htm)

4-6.1 Bank Barbs

Riprap lined channels are very smooth hydraulically. As a result, the river takes the path of least resistance and the deepest part of the channel, or thalweg, is found adjacent to the riprap bank protection. With the thalweg immediately adjacent to the bank protection, scour occurs and the bank protection can be undermined if a toe is not sufficiently keyed into the channel bottom. In this case, it is necessary to shift the thalweg away from the bank and dissipate some of the river's energy to minimize the river's erosive capacity. This can be accomplished by using a bank barb: a trapezoidal shaped rock structure, which extends into the main flow of the river as shown in Figure 4-6.1.1. Since barbs tend to redirect water to the center of the stream, they encourage deposition between the barbs along the bank.

River Barb Typical Plan View

Figure 4-6.1.1

The bank barb should extend upstream one-third of the way into the bank full channel width or the mean channel width, at a 50 -degree angle, as shown in Figure 46.1.2. This orientation will capture part of the flow and redirect it perpendicular to the downstream face of the barb. Generally, one barb can protect the length of bank equivalent to about four times the length of the barb perpendicular to the bank. This length of protection is centered about the barb such that two perpendicular barb lengths of bank upstream of the barb and two perpendicular barb lengths of bank downstream of the barb are protected.

River Barb Schematic

Figure 4-6.1.2
The benefits of constructing bank barbs are numerous. The rock structure provides additional roughness to the channel, which slows the flow and helps to decrease its energy. This in turn will reduce the erosive capacity of the river and minimize impacts to roadway embankments and streambanks. They are cost effective since they are less expensive than the alternatives of constructing a wall or placing riprap along a long section of bank. Barbs also provide fish habitat, if habitat features such as logs and root wads are incorporated into the barbs. For more information regarding fish habitat, refer to Chapter 7.

The barbs redirect flow away from the bank minimizing the potential of slope failure. Their ability to redirect the flow can also be useful in training the river to stay within its channel instead of migrating laterally. The designer should consider minimizing river migration when a bridge spans the river. When a bridge is originally constructed, it is designed in such a way that the river flows through the center of the bridge opening. However, after several years, the river will more than likely migrate laterally, possibly endangering bridge piers or abutments because it now flows only along the left side or right side of the opening or it flows at an angle to the bridge.

Barbs are an effective tool both training the river to flow through the bridge opening while protecting the bridge abutments.

As effective as barbs are at redirecting flow, there are a few situations where barbs should not be used. For rivers with large bed load (i.e., large quantities of sediments, or large size rocks), barbs may not be as effective at stabilizing the river. Barbs encourage sediments to settle out of the water because they intercept flow and slow it down. If a river has large quantities of sediments, a lot of sediment will tend to settle out upstream and downstream of the barb. The barb will lose its geometric structure and go unnoticed by the river. If the sediments carried downstream by the river are large in size, the barbs could be destroyed from the impact of large rocks or debris. Barbs may also be ineffective in rivers that flow in a direction other than parallel to the streambank. A barb would not be as effective in this situation because if the flow was at an angle to the streambank, the barb would intercept very little of the flow and thus provide very little redirection.

Three considerations should be taken into account when designing a barb: the size of rock to be used, its placement, and vegetation. For further design guidance, designers can consult HEC 23 Bridge Scour and Stream Instability Countermeasures Experience, Selection, and Design Guidance
(囚http://www.fhwa.dot.gov/engineering/hydraulics/software.cfm), or Integrated Streambank Protection Guidelines (ISPG)
(囚http://wdfw.wa.gov/hab/ahg/ispgdoc.htm) or the Region Hydraulics Engineer.

4-6.1.1 Riprap Sizing for Bank Barbs

The procedure for determining the size of rock needed for a barb can be based on tractive force theory, channel slope, and maximum permissible depth of flow. Tractive force theory is the shear stress exerted by the flow on the channel perimeter, where shear stress is equivalent to the product of channel slope, depth of flow, and the density of water. As any of these factors increase, shear stress increases, and the size of rock necessary to withstand the force of the water will increase. The rock used in the barb must be large enough in both size and weight to resist the force of the water. If the rock is not large enough to withstand the shear stress exerted by the flow, it will be washed downstream.

Assuming that the normal density of water is $62.4 \mathrm{lbf} / \mathrm{ft}^{3}\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right)$ and the specific gravity of rock riprap is 2.65 , a relation between rock size and shear stress as related to the product of depth times slope is provided below. Once the average channel slope and depth of flow for the 100-year event is known, the designer can determine
the riprap gradation to be used. If the product of slope times flow depth falls between riprap gradations, the larger gradation should be used.

The riprap sizing procedure for bank barbs is not the same procedure used for riprap bank protection. In the case of a barb, the rock is located within the river channel and fully exposed to the flow of the river. The riprap sizing is based on charts relating shear stress to sediment size from Hydraulic Engineering Circular No. 15 - Design of Roadside Channels with Flexible Linings and Hydraulic Engineering Circular No. 11- Use of Riprap for Bank Protection
(Ohttp://www.fhwa.dot.gov/engineering/hydraulics/software.cfm). For riprap bank protection, the rock is located along the streambanks with the flow being parallel to the bank. The size of rock required for bank protection will be smaller since its entire surface is not exposed to the flow. Riprap sizing for bank protection is described in Section 4-6.3.

Riprap Gradation	D $_{\mathbf{5 0}}$		Slope Times Flow Depth	
	English (ft)	Metric (m)	English (ft)	Metric (m)
Spalls	0.50 .15		0.0361	0.011
Light Loose Riprap	1.10 .32		0.0764	0.0233
Heavy Loose Riprap	2.20 .67		0.1587	0.0484
1 Meter D50 (Three Man) $^{\mathbf{1}}$	3.31		0.2365	0.0721
2 Meter D50 (Six Man) $^{\mathbf{1}}$	6.62		0.52560 .16	02

1. See Standard Specification Section 9-13.7(1).

Riprap Sizing for In-Channel Structures

Figure 4-6.1.3

4-6.1.1.1 Example Riprap Sizing for River Barb

Determine the riprap gradation required for a river barb in a reach of river with a channel slope of $0.0055 \mathrm{ft} / \mathrm{ft}$ and flow depth of 16.4 ft .

Slope Times Flow Depth $=\mathrm{Sx} \mathrm{d}$
Where: $\quad \mathrm{S}=$ slope of the channel
d $=$ flow depth
Slope Times Flow Depth $=0.0055 \times 16.4=0.0902$

Next, use Figure 4-6.1.3 to determine the Riprap Size. Since the Slope Times the Flow Depth falls between light loose and heavy loose riprap gradations, the larger gradation or heavy loose riprap should be used.

4-6.1.2 Riprap Placement for Bank Barbs

When placing the rocks, the larger rocks should be used to construct the base with the rock's longest axis pointed upstream. Smaller rocks can then be used to fill in the voids. The rocks used in the barb must be well graded to ensure interlocking between rocks. The interlocking mechanism is as important as the sizing of the rock. As long as the rocks used in the barb interlock, the barb acts as one entire unit and is better at resisting the shear stress exerted by the flow.

It is essential that the rocks used to form the downstream face are the larger rocks in the riprap gradation and securely set on the channel bottom. The larger rocks along the downstream face provide a base or foundation for the barb as these rocks are subjected to both the forces of the flow and the rocks along the upstream face of the barb. It is also very important to extend a key to the top of the bank or at least two foot above the 100-year flood elevation, see Figure 4-6.1.4. If the flow of water is allowed to get behind the key, the river will take the path of least resistance and the existing stream bank that the barb was tied into will erode. The barb will become an ineffective riprap island if not washed downstream.

River Barb Typical Cross Section

Figure 4-6.1.4

4-6.1.3 Vegetation

Vegetation is also a key factor for bank protection. Any land that has been cleared and is adjacent to a river is very susceptible to erosion. Establishing vegetation provides a root system, which can add to the stability of the bank. Plantings also add
roughness to the channel slowing the flow. The erosive capacity of the river is reduced for a minimal cost as the energy is dissipated.

The designer should be aware that although vegetation provides some benefits as mentioned above, these benefits are not immediate. There is some risk involved in losing the plantings to a flood before it has time to establish itself and take root. Under favorable conditions, plantings such as willow cuttings and cottonwoods can establish their root systems within a year. Willow cuttings are recommended because of their high survival rate and adaptability to the many conditions specific to typical highway project sites. Cottonwoods are recommended for their extensive root system, which can provide some streambank stability. For detailed information regarding planting type and spacing, the designer should contact the regional landscape architecture office or HQ Roadside and Site Development Services Unit.

4-6.2 Drop Structures

Rock drop structures are very similar to bank barbs in their ability to redirect the flow of the river and decrease its energy. This rock structure redirects the flow towards the center of the channel and is in a V-shape with the V pointing upstream see Figure 46.5.2. As the river flows over the drop structure, the flow is directed perpendicular to the downstream face of the drop structure. However, because of the V-shape of the drop structure, the flow will leave the drop structure in two directions, both aiming towards the middle of the channel. Drop structures should be constructed with the XYZ angle between 20-30 degrees. Substantial scour could be experienced in the middle of the channel if angle XYZ is too large, for angles in excess of 30 degrees designer should consult the HQ Hydraulics Office.

Two considerations should be taken into account when designing a drop structure: the size of rock and its placement. The procedure for determining the size of rock needed for a drop structure is the same procedure used for river barbs. As a general rule, the size of rock used in the structure should be larger than the size of rocks existing in the bed of the channel. As for the placement of the rock the longest axis of the rock should be pointed upstream. Care should be taken in the height of the drop. The height of the structure should not exceed 1.5 feet $(0.5 \mathrm{~m})$ and may be restricted dependent on the species of fish present in the stream. See Chapter 7 or your project biologist for more details. If the drop is too high, a scour hole will form downstream of the base of the structure causing the structure to be undermined and fail.

It is also very important to bury a portion of the drop structure to provide a key into the bank and channel bottom. Similar to barbs, the existing streambank that the drop
structure was tied into will erode, if the flow of water is allowed to get behind the key. Specific dimensions of the rock drop structure will be dependent on the river reach of interest. The designer should contact the Regional Hydraulic Engineer or HQ Hydraulics Office for design guidance.

Rock drop structures provide similar benefits as river barbs. In addition to decreasing the energy in the flow and redirecting flow, drop structures like barbs provide some protection for bridge abutments since it is a very effective river training technique.

SECTION A-A

Drop Structure Plan and Cross Section Views

Figure 4-6.5.2
Drop structures should be considered when there is a meander propagating toward a bridge. In this case, the river could get behind the bridge abutments and take out the approach fills to the bridge. Unfortunately, meander traits such as location and sinuosity are unpredictable, so unless the bridge spans the entire flood plain, there is
no guarantee that the meandering river will not impact the bridge abutment. A drop structure is suitable for this situation because it spans the entire channel and can provide redirection of flow regardless of the direction the intercepted flow is heading.

A barb would not be as effective in this situation because if the flow was at an angle to the streambank, the barb would intercept very little of the flow and thus provide very little redirection. In most cases, the use of drop structures should be limited to smaller, narrow rivers and overflow channels for constructability and permitting reasons. Permitting agencies may not allow construction equipment within the floodway. If the river is too wide, it would be extremely difficult, if not impossible, to set the rocks in the center of the channel with equipment stationed along the bank. The use of drop structures is also discouraged in rivers with large bed load. This structure spans the entire channel and can be damaged when struck by large rocks or woody debris.

4-6.3 Riprap Bank Protection

Riprap bank protection is a layer of either spalls, light loose, or heavy loose riprap placed to stabilize the bank and limit the effects of erosion. Riprap is a flexible channel lining that can shift as the bank changes since the rocks are loose and free to move. Rigid channel linings are generally not recommended for the same reasons that flexible linings are recommended. If rigid linings are undermined, the entire rigid lining as a whole will be displaced increasing the chances of failure and leaving the bank unprotected. Riprap rock encased in grout is an example of a rigid channel lining.

There is disadvantages to using riprap bank protection. Adding riprap to the channel will create a smooth section or a path of least resistance that reduces the available volume of the channel creating higher velocities. This change will impact the channel down stream where the riprap ends causing a higher potential for erosion. Because of these downstream impacts to the channel, designer should consider if using riprap for bank protection would solve the problem or create a new problem.

Riprap bank protection is primarily used on the outside of curved channels or along straight channels when the streambank serves as the roadway embankment. Riprap on the inside of the curve is only recommended when overbank flow reentering the channel may cause scour. On a straight channel, bank protection should begin and end at a stable feature in the bank if possible. Such features might be bedrock outcroppings or erosion resistant materials, trees, vegetation, or other evidence of stability.

This section does not apply to an existing bridge or when historical evidence indicates that riprap will be needed around a new bridge. In those cases, the region should indicate this information on the Bridge Site Data Sheet (Form 235-001) and refer the riprap design to HQ Hydraulics Office. Section 4-6.3.3 provides additional guidance for scour analysis.

4-6.3.1 Riprap Sizing for Bank Protection

A design procedure for rock riprap channel linings was developed by the University of Minnesota as a part of a National Cooperative Highway Research Program (NCHRP) study under the sponsorship of the American Association of State Highway and Transportation Officials (AASHTO). The design procedure presented in this section is based on this study and has been modified to incorporate riprap as defined in the WSDOT Standard Specifications: Spalls, Light Loose Riprap, and Heavy Loose Riprap.

Once the designer has completed the analysis in this section, the designer should consider the certainty of the velocity value used to size riprap along with the importance of the facility. For additional guidance, designers can consult NCHRP Report 568 Riprap Design Criteria and Hydraulic Engineering Circular 11 Design of Riprap Revetment.

Manning's Formula or computer programs as previously discussed, compute the hydraulic capacity of a riprap-lined channel. The appropriate n-values are shown in Figure 4-6.3.1.

Type of Rock Lining ${ }^{2}$		n (Small Channels ${ }^{1}$)	n (Large Channels)
Spalls	$\mathrm{D}_{50}=0.5 \mathrm{ft}(0.15 \mathrm{~m})$	0.035	0.030
Light Loose Riprap	$\mathrm{D}_{50}=1.1 \mathrm{ft}(0.32 \mathrm{~m})$	0.040	0.035
Heavy Loose Riprap	$\mathrm{D}_{50}=2.2 \mathrm{ft}(0.67 \mathrm{~m})$	0.045	0.040

1. Small channels can be loosely defined as less than $1,500 \mathrm{cfs}(45 \mathrm{~m} 3 / \mathrm{s})$.
2. See the WSDOT Standard Specifications for Road and Bridge Construction Sections 8-15 and 9-13.

Manning's Roughness Coefficients for Riprap (n)

 Figure 4-6.3.1Using Manning's Equation, the designer can determine the slope, the depth of flow, and the side slopes of the channel required to carry the design flow. The designer,
using this information, can then determine the required minimum D_{50} stone size with equation (4-9).

$$
\mathrm{D}_{50}=\mathrm{C}_{\mathrm{R}} \text { d } \mathrm{S}_{\mathrm{o}}(4-9)
$$

Where: $\quad \mathrm{D}_{50}=$ Particle size of gradation, $\mathrm{ft}(\mathrm{m})$, of which 50 percent by weight of the mixture is finer
$C_{R}=$ Riprap coefficient. See Figure 4-6.3.2
$\mathrm{d}=$ Depth of flow in channel, $\mathrm{ft}(\mathrm{m})$
$\mathrm{S}_{\mathrm{o}}=$ Longitudinal slope of channel, $\mathrm{ft} / \mathrm{ft}(\mathrm{m} / \mathrm{m})$
$B=$ Bottom width of trapezoidal channel, $\mathrm{ft}(\mathrm{m})$.

$$
\text { See } \quad \text { Figure 4-6.3.2 }
$$

Channel	$\begin{gathered} \text { Angular Rock } \\ 42^{\circ} \text { of Repose } \\ \left(0.25^{\prime} \leq D_{50} \leq 3^{\prime}\right) \\ \left(0.08 \mathrm{~m} \leq \mathrm{D}_{50} \leq \mathbf{0 . 9 1 m}\right) \end{gathered}$			Rounded Rock 38° of Repose$\begin{gathered} \left(0.25^{\prime} \leq \mathrm{D}_{50} \leq 0.75^{\prime}\right) \\ \left(\mathbf{0 . 0 8 m} \leq \mathrm{D}_{50} \leq 0.23 \mathrm{~m}\right) \end{gathered}$		
Side Slopes	B/d=1	B/d=2	B/d=4	B/d=1	B/d=2	B/d=4
1.5:1	21	19	18	28	26	24
1.75:1	17	16	15	20	18	17
2:1	16	14	13	17	15	14
2.5:1	15	13	12	15	14	13
3:1	15	13	12	15	13	12
4:1	15	13	12.5	15	13	12.5
Flat Bottom	12.5	12.5	12.5	12.5	12.5	12.5

Note: Angular rock should be used for new bank protection as it is better at interlocking and providing a stable slope. Rounded rock is unstable and is not recommended for new bank protection, the coefficients have only been provided to verify if native material is of sufficient size to resist erosion.

Rounded rock use in new design should be limited to the channel bed region and to provide stream bed characteristics in a bottomless arch culvert.

Riprap Coefficients

Figure 4-6.3.2

4-6.3.1.1 Example 1 Riprap Sizing for Bank Protection

A channel has a trapezoidal shape with side slopes of $2: 1$ and a bottom width of 10 ft . It must carry a $\mathrm{Q}_{25}=1200 \mathrm{cfs}$ and has a longitudinal slope of $0.004 \mathrm{ft} / \mathrm{ft}$. Determine the normal depth and the type of riprap, if any, that is needed.

Using the process described in example 2 of section 4-2.2.1.1 and guessing a roughness coefficient for riprap from Figure 4-6.3.1 (for this example an $\mathrm{n}=0.035$ was chosen for spalls), the normal depth was found to be $\mathrm{d}=7.14 \mathrm{ft}$ with a velocity of $\mathrm{V}=6.92 \mathrm{ft} / \mathrm{s}$.

Next use Figure 4-6.3.2 to determine what type, if any, riprap is needed.

$$
\mathrm{B} / \mathrm{d}=\frac{10 \mathrm{ft}}{7.14 \mathrm{ft}}=1.4
$$

Given a side slope of 2:1, and a calculated value of $B / d=1.4, C_{\underline{R}}$ is noted to be between 16 and 14 in Figure 4-6.3.2for angular rock. It is allowable to interpolate between B / d columns.

$$
\begin{aligned}
& \mathrm{D}_{50}=\mathrm{C}_{\mathrm{R}}(\mathrm{~d}) \mathrm{S}_{\mathrm{o}}(4-9) \\
& \mathrm{D}_{50}=15(7.14 \mathrm{ft})(0.004)=0.43 \mathrm{ft}
\end{aligned}
$$

From Figure 4-6.3.1, "Spalls" would provide adequate protection for a D_{50} of 0.5 ft or less in this channel. If the present stream bed has rock which exceeds the calculated $\underline{\mathrm{D}}_{50}$, then manmade protection is needed.

4-6.3.1.2 Example 2 Riprap Sizing for Bank Protection

Repeat the process using a 1 percent slope, and the designer finds:

$$
\begin{aligned}
& \mathrm{d}=5.75 \mathrm{ft} \\
& \mathrm{~V}=9.72 \mathrm{ft} / \mathrm{s} \\
& \mathrm{~B} / \mathrm{d}=10 / 5.75=1.74 \mathrm{ft} \\
& \mathrm{C}_{\mathrm{R}}=14.5 \\
& \mathrm{D}_{50}=14.5(5.75 \mathrm{ft})(0.01)=0.83 \mathrm{ft}
\end{aligned}
$$

In this case, from Figure 4-6.3.1, light loose riprap would be appropriate. Since the roughness coefficient noted in Figure 4-6.3.1 for light loose riprap is $n=0.040$, the designer may recalculate the depth and velocity to get a more exact answer but this would only change the normal depth slightly and would not affect the choice of bank protection. In some cases, on very high velocity rivers or rivers that can transport large rocks downstream, even heavy loose riprap may not be adequate to control erosion and specially sized riprap may need to be specified in the contract. HQ Hydraulics Office and the Materials Lab are available for assistance in writing a complete specification for special riprap.

Once the size of riprap is determined, there are several methods in which riprap bank protection can be constructed. Two types of riprap placement including dumped rock riprap and hand-placed riprap are discussed in the following sections.

4-6.3.2 Placement of Riprap Bank Protection

Once the type of riprap has been selected from Figure 4-6.3.1, the next step is to determine the appropriate installation. Several factors affect the placement of riprap including: the type of filter material best suited for the project site, the thickness at which to place riprap, and the depth to key riprap to prevent undermining. Figure 46.3.3 illustrates a typical cross section of a riprap bank protection installation.

Typical Cross Section of Riprap Bank Protection Installation Figure 4-6.3.3

The filter material acts as a transition between the native soil and the riprap, preventing the piping of fines through the voids of the riprap structure and at the same time allowing relief of the hydrostatic pressure in the soil. There are two types of filters that are used; gravel (filter blanket) or fabric (geotextile). A filter blanket may consist of a 1 -foot $(0.3 \mathrm{~m})$ thick layer of material graded from sand to 6 -inch ($150-\mathrm{mm}$) gravel, (placed in layers from fine to coarse out to the riprap). Filter materials are further described in the Standard Specifications and Design Manual. In the Standard Specifications see Section 8-15.2 for filter blankets or Section 9-33 for geotextiles, in the Design Manual see Section 530 for Geotextiles. If the existing banks are similar to the filter material of sands and gravel, no filter layer maybe needed. The proper selection of a filter material is critical to the stability of the original bank material in that it aids in preventing scour or sloughing. Prior to
selecting a filter material, the designer should first consult with the Project Engineer and the Region Hydraulic Engineer to determine if there is a preference. In areas of highly erodible soil (fine clay-like soils), HQ Hydraulics Office should be consulted and an additional layer of sand may be required. For additional guidance selecting the appropriate filter material see, Hydraulic Engineering Circular No. 11.

The thickness that riprap should be placed (shown as T in Figure 4-6.3.3 above) depends on which type of riprap was selected; quarry spalls, light loose riprap, or heavy loose riprap. Riprap thickness is 2 foot (0.6 m) for light loose riprap, 3 feet $(0.9 \mathrm{~m})$ for heavy loose riprap, and 1 foot $(0.3 \mathrm{~m})$ for quarry spalls. Care should be taken during construction to ensure that the range of riprap sizes, within each group, is evenly distributed to keep the riprap stable. Riprap is usually extended to 1 foot $(0.30 \mathrm{~m})$ above the 100 -year flood depth of the water as shown in Figure 4-6.3.3, however if severe wave action is anticipated it should extend further up the bank.

The designer and construction inspectors must recognize the importance of a proper toe or key at the bottom of any riprap bank protection. The toe of the riprap is placed below the channel bed to a depth equaling the toe scour depth. If the estimated scour is minimal, the toe is placed at a depth equivalent to the thickness of the riprap and helps to prevent undermining. Without this key, the riprap has no foundation and the installation is certain to fail. Where a toe trench cannot be dug, the riprap should terminate in a stone toe at the level of the streambed. A stone toe (a ridge of stone) placed along steep, eroding channel banks is one of the most reliable, cost effective bank stabilization structures available. The toe provides material, which will fall into a scour hole and prevent the riprap from being undermined. Added care should be taken on the outside of curves or sharp bends where scour is particularly severe. The toe of the bank protection may need to be placed deeper than in straight reaches.

4-6.3.3 Scour Analysis for Bridges and Three Sided Culverts

Bridge scour is erosion around a bridge pier or abutment caused by the river or stream. If this type of damage is not prevented or repaired, it could cause catastrophic failure to the bridge. The typical repair for this type of damage is to place large rocks around the pier. Projects such as these can be difficult to permit because they involve placing equipment and materials in environmentally sensitive areas. Per section 1-2 of Chapter 1 of this manual, it is the responsibility of the HQ Hydraulics Office to perform all bridge scour analysis, including three sided culverts. The purpose of this section is to define scour as well as explain when an analysis maybe required and by
what standards FHWA requires for a scour analysis. Also listed below is what information HQ Hydraulics requires from PEO's in order to perform a scour analysis.

Since any bridge placement within a waterway is considered a potential scour hazard, a scour analysis is required for all new bridges as well as culverts and other structures under the roadway where the amount of fill is less than half the structure opening. As conditions change at an existing site or are noted scour critical by the HQ Bridge or Hydraulics office, scour conditions may need to be re-evaluated. Once it is determined that a scour analysis is required, the region must provide the following information to the HQ Hydraulics Office in order to complete the river backwater analysis.

1. Contour information as described in item 1 in section 4-5.
2. Any proposed channel alterations including the placement of LWD components.
3. Bridge or culvert information including: pictures, dimensions, elevations, OHWM, direction of flow, and any fish passage issues.
4. Soil bearing information from the Geotech/Materials Lab.
5. Soil type and gradation of the stream (D50 and D90 values).
6. The amount of unstable material that will need to be removed and replaced.
7. Debris history from the region maintenance office to determine the vertical clearance.

The minimum requirements for a scour analysis are set by the FHWA, which requires that all bridges be designed to resist scour from a 100-year event and be checked against a 500 -year event. A complete scour evaluation includes all piers and abutments in the channel migration zone. If a consultant completes the analysis; then a report of the analysis must be sent to both HQ Hydraulics and Bridge Preservation Office's for review and approval. The consultant should contact the HQ Hydraulics Office for scour report guidelines. The 100 and 500-year flows and water surface elevations must be included on the bridge plan sheets. See the Hydraulic Report Outline in Chapter 1 for further guidance on what should be on the plan sheets.

4-6.4 Engineered Log Jams and Large Woody Debris

Streambank erosion can be controlled by slowing down the water velocity and reducing the hydraulic shear. This can be achieved by adding roughness to the channel which in turn increases the friction in the channel. Such roughness can be
introduced by installing Large Woody Debris (LWD) in the channel and along the banks. Also used are, Engineered Log Jams (ELJ), a collection of LWD that redirect flow and provide stability to a streambank.

Large Woody Debris (LWD) may be a single log or a small group of logs with the root wads still attached. As previously mentioned, LWD is typically used as a roughness feature however, when positioned properly, LWD can trap sediment which enables vegetation to establish itself ultimately stabilizing actively eroding banks. LWD can also be used to enhance wild life by; dissipating flow energy resulting in improved fish migration, as well as providing over head cover for fish and basking/perching sites for reptiles and birds. LWD can adversely affect the channel's hydraulic characteristics if placed properly; contact the HQ Hydraulics Office for further design guidance.

Engineered Log Jams (ELJ) are in-stream structures composed mainly Large Woody Debris (LWD) that direct flow and may provide stability to a streambank to protect it from erosional forces. ELJ has become increasingly popular as bank protection because they integrate fish-habitat restoration with bank protection. ELJ can either be unanchored or anchored in-place using man-made materials. Prior to designing and constructing an ELJ as a bank protection technique, it is important to understand the existing physical characteristics and geomorphic processes present at a potential site. ELJ are considered experimental and as such HQ Hydraulics is responsible for ELJ design, see section 1-2 of this manual.

4-7 Downstream Analysis

A downstream analysis identifies and evaluates the impacts, if any, a project will have on the hydraulic conveyance system downstream of the project site. All projects that propose to discharge stormwater offsite and meet the requirements below are required to submit a downstream analysis report as part of the Hydraulics Report, see the Hydraulic Report Outline in Chapter 1.

- Projects that add 5,000 square feet or more of impervious surface area.
- Project sites where known problems indicate there may be impacts on the downstream system.
- Projects that add less than 5,000 square feet of new impervious surface if the stormwater discharges into, or is within 300 feet of, a class 1 or 2 stream.
- Projects that add less than 5,000 square feet of new impervious surface, if the stormwater discharges into or is within 300 feet of a class 3 or 4 stream or an ephemeral stream.

Additionally, any outfall (either man-made or natural) where stormwater from WSDOT highways is conveyed off the ROW must be entered into the WSDOT Outfall Database. See Appendix 1-3 section 2.5 of this manual for further guidance.

4-7.1 Downstream Analysis Reports

At a minimum, the analysis must include the area of the project site to a point onequarter mile downstream of the site, and upstream to a point where any backwater conditions cease. The results of the analysis must be documented in the project Hydraulic Report. Potential impacts to be assessed in the report also include, but are not limited to: changes in peak flow, changes in flood duration, bank erosion, channel erosion, and nutrient loading changes from the project site. The analysis is divided into three parts that follow sequentially:

1. Review of Resources.
2. Inspection of drainage conveyance systems in the site area.
3. Analysis of offsite effects.

4-7.2 Review of Resources

The designer reviews available resources to assess the existing conditions of the drainage systems in the project vicinity. Resource data commonly includes aerial photographs, area maps, floodplain maps, wetland inventories, stream surveys, habitat surveys, engineering reports concerning the entire drainage basin, and any previously completed downstream analyses. All of this information should encompass an area one-quarter of a mile downstream of the project site discharge point. The background information is used to review and establish the existing conditions of the system. This base-line information is used to determine whether the project will improve upon existing conditions, have no impact, or degrade existing conditions if no mitigating measures are implemented. WSDOT Region hydraulic and environmental staff will be able to provide most of this information. Other sources of resource information include the Washington Department of Ecology, the Washington Department of Fish and Wildlife, and local agencies.

4-7.3 Inspection of Drainage Conveyance System

The designer must inspect the downstream conveyance system and identify any existing problems that might relate to stormwater runoff. The designer will physically inspect the drainage system at the project site and downstream for a distance of at least one-quarter mile. The inspection should include any problems or areas of concern that were noted during the resource review process or in conversations with local residents and the WSDOT Maintenance Office. The designer should also identify any existing or potential conveyance capacity problems in the drainage system, any existing or potential areas where flooding may occur, any existing or potential areas of extensive channel destruction erosion, and existing or potential areas of significant destruction of aquatic habitat (runoff treatment or flow control) that can be related to stormwater runoff. If areas of potential and existing impacts related to project site runoff are established, actions must be taken to minimize impacts to downstream resources.

4-7.4 Analysis of Off Site Affects

This final step analyzes information gathered in the first two steps of the downstream analysis. It is necessary to determine if construction of the project will create any problems downstream or make any existing problems worse. The designer must analyze off-site effects to determine if corrective or preventive actions that may be necessary. Designers should consult the HRM for further guidance on the design flow. In some cases, analysis of off site effects may indicate that no corrective or preventive actions are necessary. If corrective or preventive actions are necessary, the following options must be considered:

Design the onsite treatment and/or flow control facilities to provide a greater level of runoff control than stipulated in the minimum requirements in Chapter 2 of the HRM.

Take a protective action separate from meeting Minimum Requirements 5 and 6 for runoff treatment and flow control. In some situations, a project will have negative impacts even when the minimum requirements are met; for example, a site where the project discharges runoff into a small closed basin wetland even though a detention pond was installed to comply with Minimum Requirement 6. The total volume of runoff draining into the wetland will change, possibly affecting habitat and plant species in the area. If a situation is encountered where there will be downstream impacts resulting from the project, the corrective action must be applied to the project based on a practicability analysis.

Apply the no action at 0 percent improvement option for runoff treatment or flow control. The no action option treats less than 100 percent of the new impervious surface area for runoff treatment and/or flow control. This option would be applied only if the downstream system has been listed as an exempt system based on Minimum Requirement 6, or an Explanation of Non-practicability has been addressed. Under these circumstances, the designer should contact Region Hydraulics or Environmental Staff to determine the best corrective action

4-8 Weirs

The weirs described in this section are primarily used for measuring flow rate in irrigation channels. Designers should consult the Highway Runoff Manual, Chapter 5 for further guidance on weirs for other uses. Measurement of flow in channels can be difficult because of the non-uniform channel dimensions and variations in velocities across the channel. Weirs allow water to be routed through the structure of known dimension, permitting flow rates to be measured as a function of depth of flow through the structure.

The opening of a weir is called a notch; the bottom edge is the crest; and the depth of flow over the crest is called the head. The overflowing sheet of water is known as the nappe.

Sharp Crested Weir

Figure 4-8.1
Sharp crested weirs cause the water to spring clear of the crest providing an accurate measurement for irrigation channels, see Figure 4-8.1. There are other types of weirs, however sharp crested weirs are the focus of this section.

The common types of sharp crested weirs are rectangular, V-notch and compound. These three weirs are the focus of this section. All three weirs require a stilling pool or approach channel on the upstream side to smooth out any turbulence and ensure that the water approaches the notch slowly and smoothly. For accurate measurements the specification is that the width of the approach channel should be 8 times the width
of the notch and it must extend upstream for 15 times the depth of flow over the notch.

4-8.1 Rectangular Weirs

Rectangular weirs are the oldest type of weirs in use. It is recommend for higher discharge rates, above 10 cfs and not recommended for low discharge rates (less than 10 cfs) or when there is a wide range of flow. The flow rate measurement in a rectangular weir is based on the Bernoulli Equation principles and is expressed as:

$$
\mathrm{Q}=3.33 \mathrm{H}^{3 / 2}(\mathrm{~L}-0.2 \mathrm{H})(4-10)
$$

Where: $\quad \mathrm{Q}=$ Discharge in cfs second neglecting velocity of approach
$\mathrm{L}=$ the length of weir, in feet
$H=H e a d$ on the weir in feet measured at a point no less than 4 H upstream from the weir.

Figure 4-8.1.1

4-8.2 V-Notch Weirs

V-notch weirs measure low discharges, less than 10 cfs , more accurately than rectangular weirs. The V -notch is most commonly 90° opening with the sides of the notch inclined 45° with the vertical. Since the V-notch has no crest length, much smaller flows are represented by a given head than for a rectangular weir.

The discharge equation used for V -notch weirs is:

$$
\begin{equation*}
\mathrm{Q}=2.52 \mathrm{H}^{2.47} \tag{4-10}
\end{equation*}
$$

Where: $\quad \mathrm{H}=$ Vertical distance in feet between the elevation of the vortex or lowest part of the notch and the elevation of the weir

Figure 4-8.1.2

4-8.3 Trapezoidal or Cipoletti Weirs

A trapezoidal weir is a combination rectangular weir with the sides sloped to compensate for end contractions. This shape permits good measurements in streams with a wide range of flows as the sloped section is sized for low flow conditions while larger flows are measured with the rectangular weir. The discharge over a trapezoidal weir is calculated by simply applying the standard discharge equation for each segment of the weir to the head on that segment of the weir. The total discharge is then the sum of the discharges of each of the two segments of the weir as shown below: Cipolletti weirs are trapezoidal with $1: 4$ slopes to compensate for end contraction losses

$$
\begin{equation*}
Q=3.367 L H^{1.5} \tag{4-11}
\end{equation*}
$$

Where: $\quad \mathrm{Q}=$ Discharge in cfs
L =width of the bottom section of the weir in feet
H =head above the horizontal crest in feet

Trapezoidal Weir
Figure 4-8.1.3

Appendix 4-1 Manning's Roughness Coefficients (n)

I. Closed Conduits
A. Concrete pipe $0.010-0.011$
B. Corrugated steel or Aluminum circular pipe or pipe-arch:
1.2 $2 / 3 \times 1 / 2 \mathrm{in}$. Annular Corrugations, treated or untreated 0.022-0.027
2. $22 / 3 \times 1 / 2 \mathrm{in}$. Helical Corrugations
a. Plain or Protective Treatments 1
(1) 18 inch diameter and below 0.013
(2) 24 inch diameter 0.015
(3) 36 inch diameter 0.018
(4) 48 inch diameter 0.021
(5) 60 inch diameter 0.022
(6) 72 inch diameter and above 0.024
b. Protective Treatments 2 or 4^{1}
(1) 18 inch diameter and below 0.012
(2) 24 inch diameter 0.014
(3) 36 inch diameter 0.017
(4) 48 inch diameter 0.020
(5) 60 inch diameter 0.021
(6) 72 inch diameter and above 0.023
c. Protective Treatments 5 or 6^{1}
(1) All diameters 0.012
3. 3×1 in. Annular Corrugations, treated or untreated $0.027-0.028$

1. Treatments 3,4 and 6 are no longer available and appear only for reference.
2. 3×1 in. Helical Corrugations
a. Plain or Protective Treatments 1 or 3^{1}
(1) 54 inch diameters and below 0.023
(2) 60 inch diameter 0.024
(3) 72 inch diameter 0.026
(4) 78 inch diameter and above 0.027
b. Protective Treatments 2 or 4^{1}
(1) 54 inch diameters and below 0.020
(2) 60 inch diameter 0.021
(3) 72 inch diameter 0.023
(4) 78 inch diameter and above 0.024
c. Protective Treatments 5 or 6^{1}
(1) All diameters 0.012
3. 5×1 in. Annular Corrugations, treated or untreated $0.025-0.026$
4. 5×1 in. Helical Corrugations
a. Plain or Protective Treatments 1 or 3^{1}
(1) 54 inch diameters and below 0.022
(2) 60 inch diameter 0.023
(3) 66 inch diameter 0.024
(4) 72 inch diameter and above 0.025
b. Protective Treatments 2 or 4^{1}
(1) 54 inch diameters and below 0.019
(2) 60 inch diameter 0.020
(3) 66 inch diameter 0.021
(4) 72 inch diameter and above 0.022
c. Protective Treatments 5 or 6^{1}
(1) All diameters 0.012
5. Treatments 3, 4 and 6 are no longer available and appear only for reference.
C. Steel or Aluminum Spiral Rib Pipe 0.012-0.013
D. Structural Plate Pipe and Plate Pipe Arches 0.033-0.037
E. Thermoplastic Pipe 0.012
6. Corrugated Polyethylene, HDPE 0.018-0.025
7. Profile wall polyvinyl chloride, PVC 0.009-0.011
8. Solid wall polyvinyl chloride, PVC 0.009-0.015
F. Cast-iron pipe, uncoated 0.013
G. Steel pipe 0.009-0.011
H. Vitrified clay pipe $0.012-0.014$
I. Brick 0.014-0.017
J. Monolit hic concrete:
9. Wood forms, rough 0.015-0.017
10. Wood forms, smooth 0.012-0.014
11. Steel forms $0.012-0.013$
K. Cemented rubble masonry walls:
12. Concrete floor and top 0.017-0.022
13. Natural floor 0.019-0.025
L. Laminated treated wood 0.015-0.017
M. Vitrified clay liner plates 0.015
II. Open Channels, Lined (Straight Alignment)
A. Concrete, with surfaces as indicated:
14. Formed, no finish 0.013-0.017
15. Trowel finish 0.012-0.014
16. Float finish 0.013-0.015
17. Float finish, some gravel on bottom 0.015-0.017
18. Gunite, good section 0.016-0.019
19. Gunite, wavy section 0.018-0.022
B. Concrete, bottom float finished, sides as indicated:
20. Dressed stone in mortar 0.015-0.017
21. Random stone in mortar 0.017-0.020
22. Cement rubble masonry 0.020-0.025
23. Cement rubble masonry, plastered 0.016-0.020
24. Dry rubble (riprap) $0.020-0.030$
C. Gravel bottom, sides as indicated:
25. Formed concrete $0.017-0.020$
26. Random stone in mortar $0.020-0.023$
27. Dry rubble (riprap) 0.023-0.033
D. Brick 0.014-0.017
E. Asphalt:
28. Sm ooth 0.013
29. Rough 0.016
F. Wood, planed, clean 0.011-0.013
G. Concrete-lined excavated rock:
30. Good section 0.017-0.020
31. Irregular section $0.022-0.027$
III. Open Channels, Excavated (Straight Alignment, Natural Lining)
A. Earth, uniform section:
32. Clean, recently completed $0.016-0.018$
33. Clean, after weathering $0.018-0.020$
34. With short grass, few weeds $0.022-0.027$
35. In gravelly soil, uniform section, clean 0.022-0.025
B. Earth, fairly uniform section:
36. No vegetation $0.022-0.025$
37. Grass, some weeds $0.025-0.030$
38. Dense weeds or aquatic plants in deep channels $0.030-0.035$
39. Sides clean, gravel bottom 0.025-0.030
40. Sides clean, cobble bottom 0.030-0.040
C. Dragline excavated or dredged:
41. No vegetation $0.028-0.033$
42. Light brush on banks $0.035-0.050$
D. Rock:
43. Based on design section (riprap) (see section 4-6) 0.035
44. Based on actual mean section:
a. Smooth and uniform 0.035-0.040
b. Jagged and irregular 0.040-0.045
E. Channels not maintained, weeds and brush uncut:
45. Dense weeds, high as flow depth $0.08-0.12$
46. Clean bottom, brush on sides $0.05-0.08$
47. Clean bottom, brush on sides, highest stage of flow 0.07-0.11
48. Dense brush, high stage 0.10-0.14
IV. Highway Channels and Swales With Maintained Vegetation (values shown are for velocities of 2 and 6 fps)
A. Depth of flow up to 0.7 foot:
49. Bermudagrass, Kentucky bluegrass, buffalograss:
a. Mowed to 2 inches $0.07-0.045$
b. Length 4 to 6 inches $0.09-0.05$
50. Good stand, any grass:
a. Length about 12 inches 0.18-0.09
b. Length about 24 inches $0.30-0.15$
51. Fair stand, any grass:
a. Length about 12 inches $0.14-0.08$
b. Length about 24 inches $0.25-0.13$
B. Depth of flow 0.7-1.5 feet:
52. Bermudagrass, Kentucky bluegrass, buffalograss:
a. Mowed to 2 inches $0.05-0.035$
b. Length 4 to 6 inches $0.06-0.04$
53. Good stand, any grass:
a. Length about 12 inches $0.12-0.07$
b. Length about 24 inches $0.20-0.10$
54. Fair stand, any grass:
a. Length about 12 inches $0.10-0.06$
b. Length about 24 inches 0.17-0.09
V. Street and Expressway Gutters
A. Concrete gutter, troweled finish 0.012
B. Asphalt pavement:
55. Smooth texture 0.013
56. Rough texture 0.016
C. Concrete gutter with asphalt pavement:
57. Smooth 0.013
58. Rough 0.015
D. Concrete pavement:
59. Float finish 0.014
60. Broom finish 0.016
61. Street gutters 0.015
E. For gutters with small slope, where sediment may accumulate, increase above values of n by 0.002
VI. Natural Stream Channels
A. Minor streams (surface width at flood stage less than 100 ft):
62. Fairly regular section:
a. Some grass and weeds, little or no brush 0.030-0.035
b. Dense growth of weeds, depth of flow materially greater than weed height 0.035-0.05
c. Some weeds, light brush on banks 0.035-0.05
d. Some weeds, heavy brush on banks 0.05-0.07
e. Some weeds, dense willows on banks $0.06-0.08$
f. For trees within channel, with branches submerged at high stage, increase all above values by 0.01-0.02
63. Irregular sections, with pools, slight channel meander; increase values given in $1 \mathrm{a}-\mathrm{e}$ above 0.01-0.02
64. Mountain streams, no vegetation in channel, banks usually steep, trees and brush along banks submerged at high stage:
a. Bottom of gravel, cobbles, and few boulders 0.04-0.05
b. Bottom of cobbles, with large boulders 0.05-0.07
B. Flood plains (adjacent to natural streams):
65. Pasture, no brush:
a. Short grass $0.030-0.035$
b. High grass $0.035-0.05$
66. Cultivated areas:
a. No crop 0.03-0.04
b. Mature row crops $0.035-0.045$
c. Mature field crops 0.04-0.05
67. Heavy weeds, scattered brush 0.05-0.07
68. Light brush and trees:
a. Winter 0.05-0.06
b. Summer 0.06-0.08
69. Medium to dense brush:
a. Winter 0.07-0.11
b. Summer 0.10-0.16
70. Dense willows, summer, not bent over by current 0.15-0.20
71. Cleared land with tree stumps, 100 to 150 per acre:
a. No sprouts 0.04-0.05
b. With heavy growth of sprouts $0.06-0.08$
72. Heavy stand of timber, a few down trees, little under-growth:
a. Flood depth below branches 0.10-0.12
b. Flood depth reaches branches 0.12-0.16
C. Major streams (surface width at flood stage more than 100 ft): Roughness coefficient is usually less than for minor streams of similar description on account of less effective resistance offered by irregular banks or vegetation on banks. Values of n may be somewhat reduced. Follow recommendation in publication cited if possible. The value of n for larger streams of most regular section, with no boulders or brush, may be in the range of 0.028-0.033

Reference: UT Chow "Open Channel Hydraulics" for complete tables and photographs

5-1 Roadway and Structure Geometrics and Drainage

Roadway and structure pavement drainage should be considered early in a project design, while the roadway geometry is still being developed since the hydraulic capacity of gutters and inlets is determined by the longitudinal slope and superelevation of the pavement. The imperviousness of the roadway pavement will result in significant runoff from any rainfall event. To ensure safety to the traveling public, careful consideration must be given to removing the runoff from the roadway through structure pavement drainage facilities.

A roadway with a gutter section should normally be placed at a minimum longitudinal slope of 0.3 percent to 0.5 percent to allow for reasonable drainage. The flatter slopes may be used with wider shoulders and the 0.5 percent should be used as a minimum for narrow shoulders. Superelevation and/or widening transitions can create a gutter profile far different from the centerline profile. The designer must carefully examine the geometric profile of the gutter to eliminate the formation of sumps or birdbaths created by these transitions. These areas should be identified and eliminated. This generally requires geometric changes stressing the need for early consideration of drainage.

Improperly placed superelevation transitions can cause serious problems especially on bridges. As discussed in Section 5-4, inlets or other means must pick up gutter flow before the flow crosses over to the other side of the pavement. The collection of crossover flow on bridges is very complex as effective drain inlets are difficult to place within structure reinforcement. Bridges over waterways and wetlands pose water quality issues as well and drop drains may not be allowed. Also, bridge drain downspouts have a history of plugging problems and are an objectionable aesthetic impact on the structure.

Eliminating inlets on bridges can usually be accomplished by considering drainage early in the design phase. Superelevation transitions, zero gradients, and sag vertical curves should be avoided on bridges. Modern bridges generally use watertight expansion joints so that all surface water can run off of the structure and be collected in inlets placed at the bridge ends.

Drainage design at bridge ends requires a great deal of coordination between the Region designer, Bridge designer, and the Headquarters (HQ) Hydraulics Office. In many areas, the drainage plan may include the bridge. The designer is responsible for drainage upstream and downstream of the bridge. HQ Hydraulics is responsible for bridge drainage and coordination necessary at the downstream end of the bridge.

Multi-lane highways create unique drainage situations. The number of lanes draining in one direction should be considered during the design phase. The Geometric Cross Section chapter in the WSDOT Design Manual is a good reference when designing drainage for multi-lane highways. The Region Hydraulics Engineer and HQ Hydraulics Office is also available to provide design guidance. See Section 5-6 for discussion on hydroplaning and hydrodynamic drag and how to reduce its potential.

5-2 Hydrology

The Rational Method is the recommended procedure for determining peak flow rates for pavement drainage. This method is easy to use for pavement drainage design because the time of concentration is generally taken as 5 minutes. For more discussion on the Rational Method, see Chapter 2 of this manual. The design frequency and spread width are also significant variables in the design of pavement drainage. These two variables are dependant, because it reflects public expectancy for finding water on a roadway, and is linked to the classification of the highways as summarized in Figure 5-4.1.

5-3 Rural Highway Drainage

When rural highways are built on a fill, roadway drainage is usually allowed to flow, uncollected, to the sides of the roadway and over the side of the fill slope. Usually, this sheet flow of highway drainage does not present any problem to adjacent property owners nor is it a threat to the highway fill. This type of drainage is allowed for fills up to $25 \mathrm{ft}(7.5 \mathrm{~m})$. A curb should be used in highly erosive soils when the fill is high enough to justify the use of a guardrail.

Fill heights greater than $25 \mathrm{ft}(7.5 \mathrm{~m})$ may present an erosion threat to the embankment especially where the roadway forms a sag vertical curve. This problem is usually present immediately after construction and before vegetation is established. In these situations, it may be prudent to construct a curb and gutter to collect the sheet flow from the pavement and discharge this flow through a runoff treatment or flow control Best Management Practice (BMP). The treated and controlled runoff can then be discharged into an established stream or a low spot in the surrounding terrain. Selection of an appropriate BMP is dependent on the characteristics of the project site. Designers should reference the Highway Runoff Manual for selection and design criteria of BMP usage. Designers should place pipe outfalls at the bottom of a slope when feasible. This will reduce the likelihood of slope erosion due to concentrated flows at pipe outfalls. If designers chose to use channels flowing down an embankment to carry away concentrated stormwater, these channels should be lined with rock spalls, over filter material or geotextile, to ensure good service for many years. Paved channels,
on the other hand, are very vulnerable to damage. The edges of the pavement have been found to break off easily, especially if the capacity of the channel is frequently exceeded or seepage is able to get under the pavement. The HQ Hydraulics Office does not recommend paved channels unless they have a very short length and have adequate soils supporting the sides of the channel.

As noted above, curbs are often used before vegetation is established to prevent erosion. Once sufficient vegetation is present to resist erosion and treat runoff, consideration should be given to eliminating the curb in future overlay contracts. However, since most approach slabs include curb, consideration must be given to dispersing the concentrated flow at the bridge ends before removing curb. Possible solutions include; discharging runoff to an inlet, maintain curbing until runoff can be properly dispersed or utilizing a fabric or filter blanket.

5-3.1 Downstream End of Bridge Drainage

The downstream end of bridges need special attention, as further described in this paragraph. If a storm drain inlet system is not provided, a channel should be provided at the end of any significant barrier, which collects and concentrates stormwater away from the bridge. Bridges with approach slabs generally have an extruded curb beginning at the bridge end and terminating just past the approach slab. The concentrated flow shall be directed into a rock-lined ditch by creating a small depression and shaping an asphalt chute in the edge of the shoulder apron. Inlets should be located a minimum of 10 feet downstream from an approach slab to avoid approach slab settlement, see Standard Plan B-95.40-00. Bridges without approach slabs and curbing pose yet another set of problems. The concentrated flow runs off the bridge slab and flows off the fill slope, or drains behind the wing walls. Care must be taken to assure the flow is directed into the ditch, and not allowed to erode material away from the bridge end.

A ditch running parallel to the roadway generally drains rural highways in a cut section. These ditches are designed and sized in accordance with the criteria shown in Chapter 4. If the ditch slopes are very steep, they may be fitted with a series of check dams made of rock spalls and keyed into the sides of the ditch. Check dams will reduce flow velocities, prevent erosion of the soil, and may help to trap sediment from upstream sources. Check dams as well as other erosion and sediment control BMP's are covered in the Highway Runoff Manual.

5-3.2 Slotted Drains and Trench Systems

Historically, slotted drains have been used with varying degrees of success. In fact the situations that warrant the use of slotted drain inlets can actually hinder their performance. Slotted drain inlets are usually placed in areas of
minimal horizontal slope and superelevation. Since the invert of the drain is parallel to the pavement, siltation can occur due to low flow velocities. Slotted drains should be capable of $\mathrm{H}-25$ loading, for installation in heavy traffic locations. Designers should contact Region or HQ Hydraulics for design assistance.

A number of trench drain systems are available including pre-formed systems, as well as slotted channels that may be attached to metal or polyethylene pipe. The pre-formed systems are constructed of various materials and have a cross section that minimizes siltation. These systems are usually encased in a concrete-backfilled trench that provides the support of the frame. Grates vary depending on application, are produced in a variety of load ratings and may be constructed of ductile iron, stainless or galvanized steel, resin composites or fiberglass.

Other systems consist of slotted channels, usually constructed of metal and may have a minimal slope built in to help minimize the siltation problem. The slotted channel is placed in the pavement, but with the built in slope, the host pipe may be sloped slightly to improve flow. The channels can be attached to metal or polyethylene pipe and come in various widths and lengths. HQ Hydraulics has more information on all these systems and is available to assist in their design.

5-3.3 Drop Inlets

The use of the drop inlet (Standard Plans B-45.20 thru B-50.20) is intended for mountainous areas or portions of highways that have very long continuous grades. Normal wheel loads can safely pass over the grate and it is not classified as an obstruction. They have a high hydraulic capacity and are most often used in medians. The outlet pipe usually controls the discharge rather than the grate itself. They are also quite effective in passing debris that would normally plug a standard grate.

When the inlet is located in the clear zone, the designer should place the inlet as close to parallel in the direction of traffic as possible. Placing the inlet at an angle may cause an errant vehicle to overturn.

5-4 Gutter Flow

When stormwater is collected and carried along the roadside in a gutter, the allowable top width of the flow prism (Zd) is dependant on the Road Classification as noted in Figure 5-4.1.

Road Classification		Design Frequency	Design Spread (Zd)

${ }^{1}$ The travel way shall have at least 10 ft that is free of water.
2In addition to the design spread requirement, the depth of flow shall not exceed 0.12 ft at the edge of shoulder.

Design Frequency and Spread

Figure 5-4.1
In urban situations, with much lower speeds than noted in Figure 5-4.1, it may not be feasible to use the design spread recommended in this manual. In this situation, designers should first consider innovative solutions such as: increasing the slope of the gutter (from 2 to 5 percent for example), depressing the inlet, or using a combination curb opening and grate inlet. If it is still not possible to meet the design spread in Figure 5-4.1, the designer should consider the safety of the intersection, how hydroplaning could affect a driver at this location, and how quickly ponding from the rainfall event will shed off the roadway. The designer and project engineer should work with the Region Hydraulic Engineer and traffic engineer to develop a solution that best suits the project location and keeps the roadway safe. If after considering all possible scenarios, it is determined that the spread of runoff is not safe at this location then more drastic measures such as revising the project scope or seeking more funding may be necessary.

In addition to the requirements above, areas where a superelevation transition causes a crossover of gutter flow, the amount of flow calculated at the point of zero superelevation shall be limited to $0.10 \mathrm{cfs}\left(0.003 \mathrm{~m}^{3} / \mathrm{s}\right)$. The designer will find, by the time the roadway approaches the zero point, the Z_{d} will become very wide. The flow width criteria will be exceeded at the crossover point even when the flow is less than $0.10 \mathrm{cfs}\left(0.003 \mathrm{~m}^{3} / \mathrm{s}\right)$.

The equation for calculating the gutter flow capacity is a modified version of Manning's Equation. It is based on a roughness value of 0.015 , which assumes a rough, concrete or asphalt pavement gutter. Equation 5-1 and 5-2 assumes a uniform gutter section as shown in Figure 5-4.2. If the gutter section is different, designers should consult the Region Hydraulic Engineer and the Hydraulic Engineering Circular No. 22, Chapter 4, for further guidance found at © www.fhwa.dot.gov/bridge/hydpub.htm. Generally, the discharge, longitudinal slope, and superelevation are known and used to determine the depth of flow and the top width as shown in Equations 5-1 and 5-2.

Typical Gutter Section
Figure 5-4.2
$\mathrm{d}=\left[\frac{\Delta \mathrm{OS}_{\mathrm{t}}}{37\left(\mathrm{~S}_{\mathrm{L}}\right)^{0.5}}\right]^{3 / 8}$
$Z_{d}=\frac{d}{S_{t}}$
Where:
$\mathrm{d}=$ depth of flow at the face of the curb (ft)
$\Delta \mathrm{O}=$ gutter discharge (cfs)
$\mathrm{S}_{\mathrm{L}}=$ longitudinal slope of the gutter (ft/ft)
$\mathrm{S}_{\mathrm{t}}=$ transverse slope or superelevation (ft/ft)
$Z_{d}=$ top width of the flow prism (ft)

5-5 Grate Inlets and Catch Basins

There are many variables involved in determining the hydraulic capacity of an inlet including; depth of flow, grade, superelevation, and placement. The depth of flow next to the curb is a major factor in the interception capacity of an inlet. Slight variations in grade or superelevation of the roadway can also have a large effect on flow patterns. And the placement of an inlet can result in dramatic changes in its hydraulic capacity. These variables can be found by collecting the following information prior to starting an inlet design: plan sheets, road profiles, cross sections, superelevations, and contour maps.

Drainage structures should never be placed directly in the wheel path. While many are traffic rated and have lock down grates, the constant pounding of traffic causes unnecessary stress and wear on the structure, frame, and grate. Care should be taken to place the inlets next to the face of curb and at the proper elevation relative to the pavement. The structure offset shown in the plans should be to the center of grate, not to the center of structure, to ensure the grate is located along the face of curb.

Generally, median barrier scuppers are not recommended for passing runoff from one side of the barrier to a drainage structure on the other side. Instead inlets placed on each side of the median barrier should be installed as shown in Standard Plan B-95.20-00, allowing runoff to pass between the structures via a drainpipe.

Debris floating in the gutter has a tendency to collect at the inlets, plugging part or all of the grate opening. Inlets locations on a continuous grade are calculated using the full width of the grate with no allowance needed for debris. Inlets located in a sump are analyzed with an allowance for debris and are further discussed in Section 5-5.4. Areas with deciduous trees and large pedestrian populations are more prone to debris plugging. Bark from logging operations and agricultural areas are also known to cause debris problems.

This section has been divided into three areas: inlets on a continuous grade, side flow interception and sag analysis. Properties of grate inlets available in the WSDOT Standard Plans are summarized in Figure 5-5.1 and further discussed below.

5-5.1 Inlet Types

The characteristics of the most commonly used inlets at WSDOT are summarized below. For inlet additional specifications including dimensions, see Standard Plans, Section B, Drainage Structures and Hydraulics.

Herringbone Pattern or Standard Plan B-30. 50

The HQ Hydraulics Office no longer recommends using herringbone grates. Historically, use of the vaned grate was limited due to cost considerations. The cost difference now is minimal, the vaned grate is bicycle safe, and as described further in this section is hydraulically superior under most conditions. Installation of the vaned grate is critical as the grate is directional. If installed backwards the interception capacity is severely limited.
Figure 5-5.1 includes the herringbone information for existing conditions only, it is not intended for new construction.

Herringbone Pattern
Figure 5-5.1

Vaned Grate or Standard Plan B-30.30 or 30.40

At low velocities the vaned grate and herringbone grate are equally efficient. At higher velocities, greater than $5 \mathrm{ft} / \mathrm{s}(1.5 \mathrm{~m} / \mathrm{s})$, a portion of the flow tends to skip over the herringbone whereas the vaned grate will capture a greater portion of this flow. The vaned grate also has a higher capacity for passing debris and should be used for high debris areas.

Vaned Grate
Figure 5-5.2

Combination Inlets or Standard Plan B-25.20

The combination inlet is a vaned grate on a catch basin with a hooded curb cut area. Its vaned grate is very debris efficient, and if the grate does become clogged, the overflow goes into the hooded opening. These inlets
are extremely useful for sag condition installations, although they can also be effective on continuous grades. The interception capacity of a combination inlet is only slightly greater than with a grate alone. Therefore the capacity is computed neglecting the curb opening and designers should follow the same analysis as for a vaned grate alone. See Section 5-5.4 for design guidance in a sag condition.

Section and Isometric View
Combination Inlet
Frame, Hood, and Vaned Grate
Figure 5-5.3

Grate Inlets Type 1 or 2 or Standard Plans B-35.20, B-35.40, and B-40. 20

Both Types 1 or 2 grate inlets have large openings that can compensate for debris problems, however, there are limitations in their usage. A Type 1 grate inlet is a non-reinforced, cast-in-place concrete inlet, which cannot support traffic loads. Type 2 grate inlets are pre-cast and can withstand traffic loading. These inlets are installed with a Grate A, Grate B (see Figure 5-5.4) or a frame and vaned grate (see the next paragraph and Figure 5-5.5 for more information on frame and vaned grates). Due to structural failure of both Grates A or B, neither of these grates can be installed in heavy traffic areas where wheel loads will pass directly over. Grate B has very large openings and is useful in
ditches or non-paved median locations, in areas where there is no pedestrian or bicycle traffic. Grate A can be used anywhere Grate B is used as well as at the curb line of a wide interstate shoulder. Grate A may occasionally be hit by low-speed traffic or parked on but it can not withstand repeated interstate loading or turning vehicles.

Grate A and B
Figure 5-5.4

Frame and Vaned Grates or Standard Plan B-40.40

Standard Plan B-40.40 has been tested in H-25 loading and was determined compatible with heavy traffic installations. This frame and double vaned grate should be installed in a Unit H on top of a grate inlet Type 2. The frame and vaned grates may be used in either new construction or retrofit situations. When used in areas of highway speeds, lock down grates should be specified.

Frame and Vaned Grates for Installation on Grate Inlet
Figure 5-5.5
Figure 5-5.5

Circular Grate or Standard Plan B-30.80

Circular grates are intended for use with drywells, see Standard Plans B-20.20 and B-20.60 for details. Install with circular frames (rings) as detailed in Standard Plan B-30.70.

Circular Grate

Figure 5-5.6

Quarry Spall Placement Around Inlets

Quarry spalls shall not be placed around inlets. This creates a safety hazard for the maintenance personnel who need good footing to lift the heavy lids. If quarry spall check dams are desired for erosion control, locate them a minimum of 10 feet away from the grate inlet.

Standard Plan	Description	Continuous Grade ${ }^{1}$		Sump Condition ${ }^{2}$ Perimeter Flows as Weir	
		Grate Width	Grate Length	Width	Length
B-30. $\underline{50}^{3}$	Rectangular Herringbone Grate	$\begin{gathered} 1.67 \mathrm{ft} \\ (0.50 \mathrm{~m}) \end{gathered}$	$\frac{2.0 \mathrm{ft}}{(0.61 \mathrm{~m})}$	$\begin{gathered} \hline 0.69 \mathrm{ft} \\ (0.21 \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.78 \mathrm{ft} \\ (0.24 \mathrm{~m}) \\ \hline \end{gathered}$
$\begin{gathered} \text { B-30.30 or } \\ 30.40^{8} \end{gathered}$	Vaned Grate for Catch Basin and Inlet	$\begin{gathered} 1.67 \mathrm{ft} \\ (0.50 \mathrm{~m} \end{gathered}$	$\frac{2.0 \mathrm{ft}}{(0.61 \mathrm{~m})}$	$\begin{gathered} 1.31 \mathrm{ft} \\ (0.40 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 1.25 \mathrm{ft} \\ (0.38 \mathrm{~m}) \\ \hline \end{gathered}$
B-25.20 ${ }^{\text {2 }}$	Combination Inlet	$\begin{gathered} 1.67 \mathrm{ft} \\ (0.50 \mathrm{~m} \end{gathered}$	$\frac{2.0 \mathrm{ft}}{(0.61 \mathrm{~m})}$	$\begin{gathered} 1.31 \mathrm{ft} \\ (0.40 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 1.25 \mathrm{ft} \\ (0.38 \mathrm{~m}) \end{gathered}$
B-40.20	Grate Inlet Type 1 (Grate A or B4)	$\begin{gathered} 2.01 \mathrm{ft} \\ (0.62 \mathrm{~m}) \\ 3.89 \mathrm{ft}^{7} \\ (1.20 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & \underline{3.89 \mathrm{ft}} \\ & \frac{(0.62 \mathrm{~m})}{2.01 \mathrm{ft}^{7}} \\ & (1.20 \mathrm{~m}) \\ & \hline \end{aligned}$	$\begin{gathered} 1.67 \mathrm{ft} \\ (0.50 \mathrm{~m}) \\ 3.52 \mathrm{ft} \\ (1.07 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.52 \mathrm{ft} \\ (1.07 \mathrm{~m}) \\ 1.67 \mathrm{ft} \\ (0.50 \mathrm{~m}) \end{gathered}$
B-30.80	Circular Grate ${ }^{9}$	$\begin{gathered} 1.52 \mathrm{ft} \\ (0.47 \mathrm{~m}) \end{gathered}$		$\begin{aligned} & 2.55 \mathrm{ft}^{10} \\ & (0.79 \mathrm{~m}) \\ & \hline \end{aligned}$	
B-40.40	Frame and Vaned Grates for Grate Inlet Type 2	$\begin{gathered} \hline 1.75 \mathrm{ft}^{5} \\ (0.52 \mathrm{~m}) \\ 3.52 \mathrm{ft}^{6} \\ (1.05 \mathrm{~m}) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{3.52 \mathrm{ft}^{5}}{(1.05 \mathrm{~m})} \\ & \frac{1.75 \mathrm{ft}^{6}}{(0.52 \mathrm{~m})} \\ & \hline \end{aligned}$	$\begin{gathered} 1.29 \mathrm{ft} \\ (0.40 \mathrm{~m}) \\ 2.58 \mathrm{ft}^{6} \\ (0.80 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \underline{2.58 \mathrm{ft}} \\ (0.50 \mathrm{~m}) \\ 1.29 \mathrm{ft}^{6} \\ (0.26 \mathrm{~m}) \\ \hline \end{gathered}$

${ }^{1}$ Inlet widths on a continuous grade are not reduced for bar area or for debris accumulation.
${ }^{2}$ The perimeters and areas in this portion of the table have already been reduced for bar area. These values should be cut in half when used in a sag location as described in Section 5-5.4, except for the Combination Inlet B-25.20. ${ }^{3}$ Shown for informational purposes only. See Section 5-5.1.
${ }^{4}$ Type B grate shall not to be used in areas of pedestrian or vehicular traffic. See Section 5-5.1 for further discussion.
${ }^{5}$ Normal Installation, see Figure 5-5.5 or Standard Plans.
${ }^{6}$ Rotated Installation see Figure 5-5.5 or Standard Plans.
${ }^{7}$ Rotated installation, see Figure 5-5.5 or Standard Plans.
${ }^{8}$ For sag conditions, combinations inlets should use a Bi-Directional Vaned grate as shown in Standard Plan B-30.40.
${ }^{9}$ Circular Grates are only intended for use with dry wells.
${ }^{10}$ Only the perimeter value has been provided for use with weir equations.
Properties of Grate Inlets
Figure 5-5.7

5-5.2 Capacity of Inlets on a Continuous Grade

The interception capacity of an inlet on a continuous grade depends on the amount of water flowing over the grate, the size and configuration of the grate, the velocity of the flow in the gutter, and the longitudinal slope of the roadway. For longitudinal slopes between 2 to 3 percent and for velocities in the range of 3 to $5 \mathrm{ft} / \mathrm{s}$ the interception capacity of an inlet is based mainly on frontal flow. Frontal flow is water that travels through the gutter and enters through the front side (width) of the inlet. For longitudinal slopes less than 2 percent and velocities less than $3 \mathrm{ft} / \mathrm{s}$ side flow interception should also be considered as described in Section 5-5.3. An inlet will intercept essentially all frontal flow passing over the width of the inlet as long as the
velocity is less than $5 \mathrm{ft} / \mathrm{s}$. When velocities exceed $5 \mathrm{ft} / \mathrm{s}$ water will "splashover" the inlets reducing the portion of the flow that will be intercepted and increase the bypass flow. The Region Hydraulics Engineer or HQ Hydraulics Office is available to provide direction when velocities exceed $5 \mathrm{ft} / \mathrm{s}$ and additional guidance can be found in the FHWA HEC No. 22, Section 4-3 at - www.fhwa.dot.gov/engineering/hydraulics/library_arc. cfm?pub_number=22\&id=47.

Section at Inlet
 Figure 5-5.7

The flow that is not intercepted by the first grate inlet is considered bypass flow and should be added to the flow traveling toward the next grate located downstream. This carry-over process continues to the bottom of the grade or the end of the inlet system. The last inlet on a highway system is permitted to bypass $0.10 \mathrm{cfs}\left(0.003 \mathrm{~m}^{3} / \mathrm{s}\right)$ for the 10 -year MRI storm without making any further provisions. That is because 0.1 cfs will not usually cause erosion or hydroplaning problems. However the designer should still consider the cumulative affects of the final bypass flow and the area between the bypass flow and the next inlet or outfall. In areas of lower speeds such as local streets or intersections, a bypass of 0.1 cfs or greater may be an acceptable design. The designer should consider the safety of the location with the higher bypass and consult with the Region Hydraulic Engineer for approval.

The amount of flow bypassing the inlet on a continuous grade is computed as follows:
$Q_{B P}=Q\left[\frac{\left(Z_{d}\right)-(G W)}{\left(Z_{d}\right)}\right]^{8 / 3}$
Where:
$Q_{B P}=$ portion of flow outside the width of the grate, cis
$\Delta \mathrm{Q}=$ total flow of gutter approaching the inlet, fcs
$Z_{d}=$ top width of the flow prism, feet
GW = width of the grate inlet perpendicular to the direction of flow in feet

The flow that is intercepted by the inlet is calculated as follows.

$$
\begin{equation*}
Q_{i}=\Delta Q-Q_{B P} \tag{5-4}
\end{equation*}
$$

The velocity of flow directly over the inlet is calculated as shown in Equation 5-5.

$$
\begin{equation*}
\mathrm{V}_{\text {continuous }}=\frac{\mathrm{Q}-\mathrm{Q}_{\mathrm{BP}}}{(\mathrm{GW})\left[\mathrm{d}-0.5(\mathrm{GW})\left(\mathrm{S}_{\mathrm{t}}\right)\right]} \tag{5-5}
\end{equation*}
$$

Where:
$\begin{array}{ll}\mathrm{V}_{\text {continuous }} & =\text { velocity over the inlet in } \mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s}) \\ \mathrm{S}_{\mathrm{t}} & =\text { transverse slope or superelevation in } \mathrm{ft} / \mathrm{ft}(\mathrm{m} / \mathrm{m}) \\ \mathrm{d} & =\text { depth of flow at the face of the curb } \mathrm{ft}(\mathrm{m})\end{array}$

5-5.3 Side Flow Interception

For longitudinal slopes less than 2 percent and when Equation 5-5 yields velocities less than $3 \mathrm{ft} / \mathrm{s}$, side flow interception begins to make an appreciable contribution to the inlet capacity analysis and should be considered.

The velocity of flow entering the side of an inlet is shown in Equation 5-6 below.

$$
\begin{equation*}
V_{\text {side }}=\left(\frac{1.11}{\mathrm{n}}\right)\left(\mathrm{S}_{\mathrm{L}}^{0.5} \mathrm{~S}_{\mathrm{t}}^{0.67} \mathrm{Z}_{\mathrm{d}}^{0.67}\right) \tag{5-6}
\end{equation*}
$$

Where:
$\mathrm{V}_{\text {side }}=$ velocity in triangular channel, ft/s
$\mathrm{n}=0.015$ (Manning's value for concrete pavement)
$\mathrm{S}_{\mathrm{L}}=$ longitudinal slope
The ratio of frontal flow to total gutter flow is shown in Equation 5-7 below.

$$
\begin{equation*}
\mathrm{E}_{\mathrm{O}}=1-\left(1-\frac{\mathrm{GW}}{\mathrm{Z}_{\mathrm{d}}}\right)^{2.67} \tag{5-7}
\end{equation*}
$$

Where:
GW = width of depressed grate, ft
$\mathrm{Z}_{\mathrm{d}} \quad=$ top width of the flow prism, ft

The ratio of side flow intercepted to total side flow is shown in Equation 5-8 below.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{s}}=\frac{1}{\left(1+\frac{0.15 \mathrm{~V}_{\text {side }}}{\mathrm{S}_{\mathrm{t}} \mathrm{GL}^{2.8}}\right)} \tag{5-8}
\end{equation*}
$$

The efficiency of the grate is expressed in Equation 5-9 below.

$$
\begin{equation*}
E=R_{f} E_{o}+R_{s}\left(1-E_{o}\right) \tag{5-9}
\end{equation*}
$$

The amount of flow intercepted by an inlet when side flow is considered is expressed in Equation 5-10 below:

$$
\begin{equation*}
Q_{i}=Q\left(R_{f} E_{o}+R_{s}\left(1-E_{o}\right)\right) \tag{5-10}
\end{equation*}
$$

5-5.3.1 Inlet Analysis Spreadsheet

When locating and determining the capacity of inlets on a continuous grade, the process described in Sections 5-5.2 and 5-5.3 and illustrated in this example should be followed. A Microsoft Excel spreadsheet has been developed that follows this procedure to calculate roadway runoff and inlet interception for a roadway on a longitudinal slope. When velocities are less than $3 \mathrm{ft} / \mathrm{s}$ and the longitudinal slope is less than 2 percent, the spreadsheet will automatically consider side flow in the analysis. Also, when velocities exceed $5 \mathrm{ft} / \mathrm{s}$ or the bypass flow at the last inlet exceeds 0.1 cfs , the spreadsheet will warn the designer. The spreadsheet is located at © www.wsdot.wa.gov/Design/Hydraulics/Programdownloads.htm.

5-5.3.2 Example

The project is located in Seattle on a non-interstate roadway with a posted speed limit of 35 mph . The high point of a vertical curve is at Station $41+00$. The width of pavement is $38 \mathrm{ft}(11.5 \mathrm{~m})$, with a 5 ft shoulder and three 11 ft lanes. A proposed drainage system consists of grate inlets placed at the following stations:

Station	$\left(\mathbf{S}_{\mathbf{L}}\right)$ Longitudinal Grade	$\left(\mathbf{S}_{\mathbf{t}}\right)$ Superelevation
$48+50$	$\underline{0.011}$	0.035
$51+50$	0.011	0.022
$54+50$	$\underline{0.011}$	0.02
$57+50$	$\underline{0.011}$	0.02
$59+00$	$\underline{0.011}$	0.02

Complete a pavement and drain inlet analysis for this situation using the formulas below:

Solution:

Assume $\mathrm{T}_{\mathrm{c}}=5 \mathrm{~min}$ for all inlets
Use 10-year MRI design rainfall

1. Determine the intensity, see Chapter 2 of this manual Equation 2-4 and Figure 2-5.4B for m and n values. If the spreadsheet is used, once the m and n values are input ' I ' will automatically be calculated.

$$
\mathrm{I}=\frac{\mathrm{m}}{\left(\mathrm{~T}_{\mathrm{c}}\right)^{\mathrm{n}}}=\frac{5.62}{(5)^{0.530}}=2.39 \frac{\mathrm{in}}{\mathrm{hr}}
$$

2. Next select an inlet from Section 5-5 of this chapter and note the grate width (GW) and length (GL). For this example, grate inlets will be used with a $G W=2.01$ and $G L=3.89$. The designer should insert these values in the spreadsheet only at the stations where inlets will be located.
3. Designers should input the superelevation and longitudinal grade from the table above on the spreadsheet. Stations where the superelevation and or longitudinal grade change but there is no grate should still be noted on the spreadsheet.
4. Using the Rational Method, Section 2-5, determine the runoff from the flow at the high point of the vertical curve to the next inlet or $\Delta \mathrm{Q}$. This is the amount of runoff that could be intercepted by the first inlet. By noting the parameters in steps 1 and 2 along with the width of the paved area and the station where proposed inlets will be located, $\Delta \mathrm{Q}$ will automatically be calculated on the spreadsheet.
a. Determine the area of flow from the high point of the vertical curve (Station $41+00$) to the first inlet (Station 48+50).

$$
\mathrm{A}=38 \mathrm{ft} \times((48+50-41+00))=28,500 \mathrm{ft}^{2}
$$

(Convert to acres; see Appendix A 1-1 for conversion.)

$$
\mathrm{A}=\frac{28,500 \mathrm{ft}^{2}}{43,560 \frac{\mathrm{ft}^{2}}{\text { acre }}}=0.65 \text { acres }
$$

b. Determine flow collected from Stations $41+00$ to $48+50$.

$$
\Delta \mathrm{Q}=\frac{\mathrm{CIA}}{\mathrm{~K}_{\mathrm{c}}}=\frac{(0.9)(2.39)(0.65)}{1}=1.41 \mathrm{cfs}
$$

5. The inlet at Station $48+50$ is analyzed next. The depth of flow (d) and width of flow $\left(Z_{d}\right)$ are calculated using the Equations 5-1 and 5-2. Verify Z_{d} is within the allowable limit as shown in Figure 5-4.1. For this example, the Z_{d} is limited to the the shoulder width $(5 \mathrm{ft})$ plus one-half of the traveled lane $(5.50 \mathrm{ft})$ or 10.5 ft .

$$
\begin{aligned}
& \mathrm{d}=\left[\frac{\Delta \mathrm{QS}_{\mathrm{t}}}{37\left(\mathrm{~S}_{\mathrm{L}}\right)^{0.5}}\right]^{3 / 8}=\left[\frac{1.41 \times 0.035}{37(0.011)^{0.5}}\right]^{3 / 8}=0.19 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{d}}=\frac{\mathrm{d}}{\mathrm{~S}_{\mathrm{t}}}=\frac{0.19}{.035}=5.56 \mathrm{ft}
\end{aligned}
$$

Z_{d} is acceptable since $\mathrm{Z}_{\mathrm{d}}=5.56 \mathrm{ft}$ which is less than the allowable limit of 10.5 ft . When Z_{d} is less than allowable designers can chose to move the inlet further downstream as long as the inlet spacing requirements are still met. Once Z_{d} reaches the allowable limit a GW and GL should be inserted at that station on the spreadsheet.
6. QBP is then calculated utilizing Equation 5-3, this is the portion of water that is flowing past the inlet and added to the flow for the next inlet $(51+50)$.

$$
Q_{B P}=\Delta Q\left[\frac{\left(Z_{d}\right)-(G W)}{Z_{d}}\right]^{8 / 3}=1.41\left[\frac{(5.56)-(2.01)}{5.56}\right]^{8 / 3}=0.43 \mathrm{cfs}
$$

7. Calculate the velocity to verify it is between $3-5 \mathrm{ft} / \mathrm{s}$. If the velocity is less than $3 \mathrm{ft} / \mathrm{s}$ and the grade is less than 2 percent, side flow should also be considered as shown in Example 5-5.3.3. If the velocity is greater than $5 \mathrm{ft} / \mathrm{s}$, the designer should attempt to reduce the velocity. In this example even though the grade is less than 2 percent, the velocity is greater than $3 \mathrm{ft} / \mathrm{s}$ so side flow is still considered negligible.
$V_{\text {continuous }}=\frac{\Delta Q-Q_{B P}}{(G W)\left[d-0.5(G W)\left(S_{\mathrm{t}}\right)\right]}=\frac{1.41-0.43}{(2.05)[0.19-0.5(2.05)(0.035)]}=3.07 \frac{\mathrm{ft}}{\mathrm{s}}$
8. Next, the amount of flow intercepted by the grate is calculated using Equation 5-4.

$$
Q_{i}=\Delta Q-Q_{B P}=1.41-0.43=0.98 \mathrm{cfs}
$$

9. The designer then proceeds to the next inlet at Station $51+50$ and repeats the analysis at steps 2 and 3 as shown below:

$$
\begin{aligned}
& \mathrm{A}=38 \mathrm{ft} \times((51+50-48+50))=11,400 \mathrm{ft}^{2} \\
& \mathrm{~A}=\frac{11,400 \mathrm{ft}^{2}}{43,560 \frac{\mathrm{ft}^{2}}{\mathrm{acre}}}=0.26 \mathrm{acres} \\
& \Delta \mathrm{Q}=\frac{\mathrm{CIA}}{\mathrm{~K}_{\mathrm{c}}}=\frac{(0.9)(2.39)(0.26)}{1}=0.56 \mathrm{cfs}
\end{aligned}
$$

10. The by pass flow $\left(\mathrm{Q}_{\mathrm{BP}}\right)$ from Station $48+50$ should be added to delta flow $(\Delta \mathrm{Q})$ above to determine the total flow $(\Sigma \mathrm{Q})$ approaching the next inlet at Station 51+50.

$$
\Sigma Q=Q_{B P}+\Delta Q=0.43+0.56=0.99 \mathrm{cfs}
$$

If the velocity remained between 3 to $5 \mathrm{ft} / \mathrm{s}$ and the longitudinal slope was greater than 2 percent, designers would repeat steps 5-10 till the end of the inlet system.

5-5.3.3 Example - Inlet Capacity Analysis With Side Flow

For velocities less than $3 \mathrm{ft} / \mathrm{s}$ and longitudinal grades less than 2 percent, side flow should also be considered in the analysis as shown below.

Station	$\left(\mathbf{S}_{\mathbf{L}}\right)$ Longitudinal Grade	$\left(\mathbf{S}_{\mathbf{t}}\right)$ Superelevation
$48+50$	0.011	0.035
$51+50$	0.011	0.022
$54+50$	0.011	0.02
$57+50$	0.011	0.02
$59+00$	0.011	0.02

11. This is the same as step 5 above; except the depth of flow (d) and width of flow $\left(Z_{d}\right)$ are calculated at station 51+50. 5-2.

$$
\begin{aligned}
& d=\left[\frac{\Delta Q S_{\mathrm{t}}}{37\left(\mathrm{~S}_{\mathrm{L}}\right)^{0.5}}\right]^{3 / 8}=\left[\frac{0.99 \times 0.022}{37(0.011)^{0.5}}\right]^{3 / 8}=0.14 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{d}}=\frac{\mathrm{d}}{\mathrm{~S}_{\mathrm{t}}}=\frac{0.14}{.022}=6.51 \mathrm{ft} \\
& \mathrm{Z}_{\mathrm{d}} \text { is acceptable sisnce } \mathrm{Z}_{\mathrm{d}}<10.5 \mathrm{ft}
\end{aligned}
$$

12. Q_{BP} is then calculated utilizing Equation 5-3, this is the portion of water that is flowing past the inlet and added to the flow for the next inlet $(51+50)$.

$$
Q_{B P}=\Delta Q\left[\frac{\left(Z_{d}\right)-(\mathrm{GW})}{Z_{d}}\right]^{8 / 3}=0.99\left[\frac{(6.51)-(2.01)}{6.51}\right]^{8 / 3}=0.37 \mathrm{cfs}
$$

13. Check the velocity at station $51+50$.

$$
V_{\text {continuous }}=\frac{\Delta Q-Q_{B P}}{(\mathrm{GW})\left[\mathrm{d}-0.5(\mathrm{GW})\left(\mathrm{S}_{\mathrm{t}}\right)\right]}=\frac{0.99-0.37}{(2.01)[0.14-0.5(2.01)(0.022)]}=2.55 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Since the velocity is less than $3 \mathrm{ft} / \mathrm{s}$, side flow should also be considered in the analysis.
14. The velocity of flow entering the side of an inlet is calculated using Equation 5-6.
$V_{\text {side }}=\left(\frac{1.11}{\mathrm{n}}\right)\left(\mathrm{S}_{\mathrm{L}}^{0.5} \mathrm{~S}_{\mathrm{t}}^{0.67} \mathrm{Z}_{\mathrm{d}}{ }^{0.67}\right)=\left(\frac{1.11}{0.015}\right)(0.011)^{0.5}(0.022)^{0.67}(6.51)^{0.67}=2.11 \frac{\mathrm{ft}}{\mathrm{s}}$
15. Next determine the ratio of frontal flow to total gutter flow is shown using Equation 5-7 below.

$$
E_{O}=1-\left(1-\frac{G W}{Z_{d}}\right)^{2.67}=1-\left(1-\frac{2.01}{6.51}\right)^{2.67}=0.63
$$

16. Using Equation 5-8, calculate the ratio of side flow intercepted to total side flow.

$$
\mathrm{R}_{\mathrm{S}}=\frac{1}{\left(1+\frac{0.15 \mathrm{~V}_{\text {side }} 1.8}{\mathrm{~S}_{\mathrm{t}} \mathrm{GL}^{2.3}}\right)}=\frac{1}{\left(1+\frac{0.15(2.11)^{1.8}}{(0.022)(3.89)^{2.3}}\right)}=0.47
$$

17. The efficiency of the grate is expressed using Equation 5-9. R_{f} is the ratio of front flow intercepted to total frontal flow. As noted in Section 5-5.2, all the flow traveling over the inlet is assumed to be intercepted by the inlet. So for this example Rf is assumed to be 1 or 100 percent.

$$
E=R_{f} E_{O}+R_{S}\left(1-E_{O}\right)=(1(0.63)+(0.47)(1-0.63))=0.80
$$

18. The amount of flow intercepted by an inlet when side flow is considered is calculated using Equation 5-10.

$$
Q_{i}=Q\left(R_{f} E_{O}+R_{S}\left(1-E_{O}\right)\right)=0.99(1.0(0.63)+0.47(1-0.63))=0.79 \mathrm{cfs}
$$

19. Finally determine the flow that bypasses the inlet and travels to the next inlet downstream.

$$
Q_{B P}=\Sigma Q-Q_{i}=0.99-0.79=0.20 \mathrm{cfs}
$$

Repeat the process starting at step 9 through the end of the inlet system.

5-5.3.4 Example - Conclusion

Designers should verify all velocities are less than $5 \mathrm{ft} / \mathrm{s}$ and the Z_{d} does not exceed the allowable spread as noted in Table 5-4.1.

Verify Q_{BP} downstream of the final inlet is less than $0.10 \mathrm{cfs}(0.003 \mathrm{~m} 3 / \mathrm{s})$. The spacing between inlets should be a minimum of $20 \mathrm{ft}(7 \mathrm{~m})$ to enable the bypass water to reestablish flow against the face of curb.

Keep in mind that the deeper a gutter flows, the more efficient the inlet will perform. Generally 300 ft (90 meter) spacing between inlets is the maximum allowed, see Section 6-2 for further discussion.

5-5.4 Capacity of Inlets in Sag Locations

By definition, a sag is any portion of the roadway where the profile changes from a negative grade to a positive grade. Inlets at sag locations perform differently than inlets on a continuous grade and therefore require a different design criterion. Theoretically, inlets at sag locations may operate in one of two ways: (1) at low ponding depths, the inlet will operate as a weir; (2) high ponding depths ($5^{\prime \prime}$ depth above the grated inlet and 1.4 times the grate opening height for combination inlets), the inlet will operate as an orifice. It is very rare that ponding on a roadway will become deep enough to force the inlet to operate as an orifice. As a result, this section will focus on inlets operating as a weir with flow spilling in from the three sides of the inlet that are exposed to the ponding.

Inlets at sag locations can easily become plugged with debris and therefore, it is good engineering practice to provide some type of relief. This relief can be accomplished by locating flanking inlets, on either side of the sag inlet, so they will operate before water exceeds the allowable spread into the travel lane at the sag. This manual recommends flanking inlets be located so the depth of water at the flanking inlet ponds to half the allowable depth at the sag (or $1 / 2 \mathrm{~d}_{\mathrm{B}}$). With that said, flanking inlets are only required when the sag is located in a depressed area and water has no outlet except through the system. A curb, traffic barrier, retaining wall, or other obstruction, which prevents the runoff from flowing off of the traveled roadway, generally contains this ponded area. However, if runoff is capable of overtopping the curb and flowing away from the roadway before exceeding the allowable limits noted in Figure 5-4.1, flanking inlets are not required. With this situation there is a low potential for danger to the drivers of the roadway if the inlets do not function as designed. Before flanking inlets are removed in this situation, designers should consider the potential damage of water going over the curb. Designers should use the guidelines provided in this section for locating flanking inlets. If a designer suspects flanking inlets are unnecessary, consult the Region Hydraulics Engineer early in the design for approval.

Any section of roadway located in a sag should be designed according to the criteria described below. To aid the designer in sag analysis, a copy of the sag worksheet is located on the HQ Hydraulic web page at ${ }^{\circ}$ http://www.wsdot. wa.gov/publications/fulltext/Hydraulics/Programs/SagWorksheetud.xls.

Sag Analysis
Figure 5-5.8
Once an inlet has been placed in a sag location, the total actual flow to the inlet can be determined as shown below. $\mathrm{Q}_{\text {Total }}$ must be less than $\mathrm{Q}_{\text {allowable }}$ as described in Equation 5-13.

$$
\begin{equation*}
Q_{\text {Total }}=Q_{B P 1}+Q_{B P 2}+\Delta Q_{1}+\Delta Q_{2} \tag{5-11}
\end{equation*}
$$

Where:

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{BP} 182}= & \text { bypass flow from the last inlet on either side of a continuous grade } \\
& \text { calculated using Equation 5-3 }
\end{aligned}
$$

The effective perimeter of the flanking and sag inlets can be determined using the length and widths for various grates given in Figure 5-5.1. This would be the sum of the three sides of the inlet where flow spills in and where ponding would occur. The three inlets should be assumed to be 50 percent plugged (except for the Combination Inlet B-25.20, which should be considered 0 percent plugged), therefore the total available perimeter should be reduced by half in the analysis. This adjustment is in addition to reducing the perimeter to account for the obstruction caused by the bars in the grate. Figure 5-5.7 lists perimeters for various grates with reductions already made for bars.

$$
\begin{equation*}
P_{n}=0.5[L+2 W] \tag{5-12}
\end{equation*}
$$

Where:
$P=$ effective perimeter of the flanking and sag inlet
$\mathrm{L}=$ length of the inlet from Figure 5-5.7
$\mathrm{W}=$ width of the inlet from Figure 5-5.7
The allowable capacity of an inlet operating as a weir, that is the maximum $\mathrm{Q}_{\text {allowable }}$, can be found depending on the inlet layout as described below:

When there is only a single inlet at the sag (no flanking inlets) the following equation should be used:

$$
\begin{equation*}
Q_{\text {allowable }}=C_{w} \times P \times d_{B}^{1.5} \text { allowable } \tag{5-13a}
\end{equation*}
$$

Where:
$C_{w} \quad=$ Weir coefficient, 3.0 for English (1.66 for Metric)
$P \quad=$ effective perimeter of the grate in feet
$\mathrm{d}_{\mathrm{B} \text { allowable }}=$ maximum depth of water at the sag inlet in feet
As noted previously it is recommended that flanking inlets be located laterally from the sag inlet at a distance equal to $0.5 \mathrm{~d}_{\mathrm{B} \text { allowable. }}$. When this recommendation is followed, $\mathrm{Q}_{\text {allowable }}$ can be simplified as shown below. If the inlets are not all the same size, the following equation will need to be modified to account for different perimeters:

$$
\begin{equation*}
\Sigma Q=C_{W} \times P \times\left[2\left(0.5 d_{B}\right)^{1.5}+\left(d_{B}\right)^{1.5}\right] \tag{5-13b}
\end{equation*}
$$

Where:

$$
\mathrm{d}_{\mathrm{B}}=\text { depth of water at the sag inlet (ft) }
$$

In some applications, locating inlets so water ponds to $0.5 \mathrm{~d}_{\mathrm{B}}$ allowable is too far (generally in cases with long flat slopes). Designers should instead ensure that the spread of surface water does not exceed those noted in Figure 5-4.1 and use the equation below.

$$
\begin{equation*}
Q_{\text {allowable }}=C_{W} P\left[d_{A} 1.5+\left(d_{B}\right)^{1.5}+d_{C}{ }^{1.5]}\right. \tag{5-13c}
\end{equation*}
$$

Where:
$\mathrm{d}_{\mathrm{N}}=$ depth of water at the flanking inlets and the sag (ft)

The actual depth of water over the sag inlet can be found with Equation 5-14 below and must be less than $\mathrm{d}_{\text {B allowable }}$ which can be found using Equation 5-2. If however, the inlets are or are not located at $0.5 \mathrm{~d}_{\mathrm{B} \text { allowable }}$, Equation 5-14 will need to be modified to reflect this.

$$
\begin{equation*}
d_{B}=\left[\frac{Q_{\text {Total }}}{\left(C_{W A} P_{A} 0.3536+C_{W B} P_{B}+C_{W C} P_{C} 0.3536\right)}\right]^{2 / 3} \tag{5-14}
\end{equation*}
$$

Where:
$\mathrm{Q}_{\text {Total }}=$ actual flow into the inlet in cfs (cms)
$\mathrm{C}_{\mathrm{w}}=$ Weir coefficient, 3.0 (1.66 for metric)
$P_{N} \quad=$ effective grate perimeter, in feet (m), see Figure 5-5.7
$d_{B} \quad=$ actual depth of ponded water at the inlet in feet (m)
After the analysis is completed the designer should verify the allowable depth and flow have not been exceeded. That is verify $\mathrm{Q}_{\text {allowable }}>\mathrm{Q}_{\text {Total }}$ and $\mathrm{d}_{\mathrm{B} \text { allowable }}>\mathrm{d}_{\mathrm{B}}$. If the allowable flow and depth are greater than the actual, then the maximum allowable spread will not be exceeded and the design is acceptable. If the actual depth or flow is greater than the allowable, then the runoff will spread beyond the maximum limits and the design is not acceptable. In this case, the designer should add flanking inlets or replace the three original inlets with inlets that have larger openings. If additional flanking inlets are used they should be placed close to the sag inlet to increase the flow interception and reduce the flow into the sag.

5-5.4.1 Example

For this example, assume there is a roadway with a sag in the profile. Inlet spacing has already been calculated using the 10 -year MRI for the continuous grade sections on either side of the sag, see Example 5-5.3.2.

1. Place an inlet at the low or sag point in the gutter profile, use the gutter profile to determine this location instead of the centerline profile. Whenever possible, a combination inlet should be used at this location to provide continued inlet flow if the grate becomes plugged with debris.
2. The next step is to determine how much runoff will bypass the final inlet on either side of the sag using the 50 -year MRI, see step 1 in Example 5-5.3.2. Using the pavement design spreadsheet from Example 5-5.3.2, repeat the analysis using the 50 -year m and n values. This may create a higher than allowable width of flow at some inlet locations on the continuous grade section previously calculated; however, this is ignored since the flows are calculated only to determine how much flow will bypass the final inlet on the continuous grade and enter the sag during the 50 -year MRI. For this example, use 0.1 cfs for a bypass flow from the down stationing side and 0.08 cfs for a bypass flow from the up stationing side (the bypass was found using Equation 5-3 similar to 6 of Example 5-5.3.2).
3. The next step is to calculate the runoff, other than bypass flow, that is contributing to the ponding in the sag using the 50 -year MRI. This is done as described in step 4 of Example 5-1 and is the runoff that is generated from the pavement between the last inlet on either side of the continuous grades. It is calculated by determining the total pavement area downstream of the continuous grade inlets contributing runoff to the sag and applying the rational method using this area. The rational method is used in the same manner as when runoff is calculated for a continuous grade (see the Example 5-5.3.2 numbers 2 and 3). For this example, use $\mathrm{Q}_{1}+\mathrm{Q}_{2}=$ 0.72 cfs as the runoff from the pavement in the sag.
4. Once this flow value is calculated, it is added to the two bypass flows to determine the total flow contributing to the sag, using Equation 5-11.

$$
\begin{aligned}
& \mathrm{Q}_{\text {Total }}=\mathrm{Q}_{\mathrm{BP} 1}+\mathrm{Q}_{\mathrm{BP} 2}+\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
& \mathrm{Q}_{\text {Total }}=0.1+0.08+0.72=0.90 \mathrm{cfs}
\end{aligned}
$$

5. Next, $\mathrm{d}_{\mathrm{B} \text { allowable }}$ is checked at the sag using Equation 5-2. At the lowest point of the sag, in this example, the transverse slope or superelevation at the pavement edge is $0.02 \mathrm{ft} / \mathrm{ft}$. Since the shoulder is 5 feet wide and the traveled lane is 11 feet wide, the allowable width of ponding $\left(\mathrm{Z}_{\mathrm{d}}\right)$ is 10.5 feet (the shoulder width plus half of the traveled lane). The allowable depth of ponding at the sag is:

$$
d_{B \text { allowable }}=S_{t} \times Z_{d}=0.02 \times 10.5=0.21 \mathrm{ft}
$$

6. Two additional flanking inlets should be placed on each side of the inlet at the sag this will add relief if the sag inlet becomes clogged or the design spread is exceeded. The flanking inlets can be regular grate inlets and should be located so that the ponded water is $0.5 \mathrm{~d}_{\text {B allowable }}=0.105 \mathrm{ft}$. deep above the flanking inlets and the allowable spread is equal to or less than noted in Figure 5-4.1.
7. Next, use Equation 5-14 to determine the effective perimeter of the flanking and sag vaned inlets using the length and widths given in Figure 5-5.7. The three inlets must convey the total flow without causing more that 0.21 ft of ponding at the deepest point.

$$
\begin{aligned}
& P_{n}=0.5[\mathrm{~L}+2 \mathrm{~W}] \\
& \mathrm{P}=0.5(1.25+2 \times 1.31)=1.94 \mathrm{ft}
\end{aligned}
$$

8. Next, determine the maximum allowable flow $\Sigma \mathrm{Q}_{\text {allowable }}$ into all three inlets when maximum ponding $\left(\mathrm{d}_{\mathrm{B}}\right.$ allowable $)$ occurs. The flow into the lowest inlet is calculated using Equation 5-13b with the depth $\mathrm{d}_{\text {B allowable }}$ and the effective perimeter.

$$
\begin{aligned}
& \Sigma Q_{\text {allowable }}=C_{W} \times P \times\left[2\left(0.5 d_{\mathrm{B}}\right)^{1.5}+\left(\mathrm{d}_{\mathrm{B}}\right)^{1.5}\right] \\
& \Sigma \mathrm{Q}_{\text {allowable }}=\left[3 \times 1.94 \times\left[2(.5 \times 0.21)^{1.5}+(0.21)^{1.5}\right]\right]=0.95 \mathrm{cfs}
\end{aligned}
$$

9. The actual depth of water over the sag inlet, dB should be calculated.

$$
\begin{aligned}
& d_{B}=\left[\frac{Q_{\text {Total }}}{\left(C_{W A} P_{A} 0.3536+C_{W B} P_{B}+C_{W C} P_{C} 0.3536\right)}\right]^{2 / 3} \\
& d_{B}=\left[\frac{0.90}{3 \times 1.94 \times 0.3536+3 \times 1.94+3 \times 1.94 \times 0.3536}\right]^{2 / 3}=0.20 \mathrm{ft}
\end{aligned}
$$

10. Finally the actual values are compared to the maximum allowable values as follows:

$$
\begin{aligned}
& 0.95 \mathrm{cfs}>0.90 \mathrm{cfs} \text { or } \\
& Q_{\text {allowable }}>Q_{\text {Total }} \\
& \therefore \text { Therefore the design is acceptable } \\
& 0.21 \mathrm{ft}>0.20 \mathrm{ft} \text { or } \\
& d_{B} \text { allowable }>d_{B} \\
& \therefore \text { Therefore the design is acceptable }
\end{aligned}
$$

If either the actual depth or flow exceeded the maximum allowable, the design would not be acceptable. In this case the designer would need to repeat the process as described in Section 5-5.3 until the design parameters are met. If the design parameters cannot be met due to project constraints, the designer should consult the Region Hydraulics Engineer for further design guidance.

A worksheet of the steps outlined in this example can be found at the following web link: ऊ www.wsdot.wa.gov/publications/fulltext/Hydraulics/ Programs/SagWorksheetud.xls. Designers may find it useful to fill out the worksheet for each inlet located at a sag. Worksheets should be submitted with the hydraulics reports.

5-6 Hydroplaning and Hydrodynamic Drag

As the depth of water flowing over a roadway surfaces increases, the potential for both hydroplaning and hydrodynamic drag increases. Both are discussed in more detail in the subsequent paragraphs below.

Hydrodynamic drag is a term used to describe the force applied to the tire of a vehicle pushing through water as opposed to the tire lifting off the pavement (hydroplaning). The differential force between the tire in the water and the tire out of the water causes the vehicle to "pull" or veer to the side of the water. This usually occurs at speeds less than 50 mph and in water deeper than the depth of the vehicles tire tread. Minimizing water flow depth across lanes and intrusion of flow into lanes will decrease the possibility of hydrodynamic drag.

When rolling tires encounter a film of water on the roadway, the water is channeled through the tire pattern and through the surface roughness of the pavement. Hydroplaning occurs when the drainage capacity of the tire tread pattern and the pavement surface is exceeded and the water begins to build up in front of the tire. As the water builds up, a water wedge is created and this wedge produces a force, which can lift the tire off the pavement surface. This is considered as full dynamic hydroplaning and, since water offers little shear resistance, the tire loses its tractive ability and the driver may lose control of the vehicle.

Hydroplaning is a function of the water depth, roadway geometrics, vehicle speed, tread depth, tire inflation pressure, and conditions of the pavement surface. The following can reduce the hydroplaning potential of a roadway surface:

1. Design the highway geometries to reduce the drainage path lengths of the water flowing over the pavement. This will prevent flow build-up.
2. Increase the pavement surface texture depth by such methods as grooving of Portland cement concrete. An increase of pavement surface texture will increase the drainage capacity at the tire pavement interface.
3. The use of open graded asphaltic pavements has been shown to greatly reduce the hydroplaning potential of the roadway surface. This reduction is due to the ability of the water to be forced through the pavement under the tire. This releases any hydrodynamic pressures that are created and reduces the potential for the tires to hydroplane.
4. The use of drainage structures along the roadway to capture the flow of water over the pavement will reduce the thickness of the film of water and reduce the hydroplaning potential of the roadway surface.

6-1 Introduction

A storm drain (storm sewer) is a network of pipes that conveys surface drainage from a surface inlet or through a manhole, to an outfall. Storm drains are defined as closed pipe networks connecting two or more inlets, see Figure 6-1.1. Storm drain networks typically consist of lateral(s) that discharge into a trunk line. The trunk line then receives the discharge and conveys it to an outfall.

Storm Drain Structure
 Figure 6-1.1

While configurations like the one shown in Figure 6-1.1 are typical, there are also other configurations that do not meet the storm drain definition as shown in Figure 6-1.2. In cases where there is only one inlet and no more than two pipes, this should be classified as a culvert on the plan sheets and designed as follows:

1. Storm drain - that does not require pressure testing.
2. Lateral - that does not require pressure testing.
3. Storm drain - that does require pressure testing.
4. Storm drain - that does not require pressure testing.

Storm Drain Configurations

Figure 6-1.2

All storm drain designs will be based on an engineering analysis which takes into consideration runoff rates, pipe flow capacity, hydraulic grade line, soil characteristics, pipe strength, potential construction problems, and potential runoff treatment issues. The majority of time spent on a storm drain design is calculating runoff from an area and designing a pipe to carry the flow. A storm drain design may be performed by hand calculations or by one of several available computer programs and spreadsheets. In addition to storm drain design guidance, this chapter also contains information on drywells (Section 6-7), pipe materials used for storm drains (Section 6-8), and designing for subsurface drainage (Section 6-9).

6-2 Design Criteria

Along with determining the required pipe sizes for flow conveyance and the hydraulic grade line, storm drain system design should consider the following guidelines:

1. Soil Conditions - Soil with adequate bearing capacity must be present to interact with the pipes and support the load imparted by them. Surface and subsurface drainage must be provided to assure stable soil conditions.

Soil resistivity and pH must also be known so the proper pipe material can be specified. See Section 8-5 for further guidance.
2. Inlet Spacing and Capacity - Design guidelines for inlet spacing and capacity are detailed in Chapter 5, Drainage of Highway Pavements. For minimum clearance between culverts and utilities, designers should consult the Region Utilities Office for guidance.
3. Junction Spacing - Junctions (catch basins, grate inlets and manholes) should be placed at all breaks in grade and horizontal alignment. Pipe runs between junctions should not exceed 300 feet (100 meters) for pipes smaller than 48 inches (1,200 millimeters) in diameter and 500 feet (150 meters) for pipes 48 inches (1,200 millimeters) or larger in diameter. When grades are flat, pipes are small or there could be debris issues; designers should consider reducing the spacing. Region Maintenance should be consulted for final approval on maximum spacing.
4. Future Expansion - If it is anticipated that a storm drain system may be expanded in the future, provision for the expansion shall be incorporated into the current design. Additionally, prior to expanding an existing system, the existing system should be inspected for structural integrity and hydraulic capacity.
5. Velocity - The design velocity for storm drains should be between 3 to 10 feet per second. This velocity is calculated using Manning's Equation (6-1), under full flow condition even if the pipe is only flowing partially full with the design storm. The minimum slope required to achieve these velocities is summarized in the Figure 6-2.

Pipe Diameter (inches)	Minimum Slope (ft/ft)	
$\mathrm{n}=0.013$	2.5 fps	3 fps
12	0.003	0.0044
15	0.0023	0.0032
18	0.0018	0.0025
24	0.0012	0.0017

Minimum Storm Drain Slopes
Figure 6-2
When flows drop below 3 feet per second (1.0 meter per second), pipes can clog due to siltation. Flows can be designed to as low as 2.5 feet per second with justification in the hydraulic report however, lower velocities require prior approval. As the flow approaches (and exceeds) 10 feet per second, higher energy losses are produced in the storm drain system that
can cause abrasion in the pipes. For velocities approaching or exceeding 10 feet per second, designers should consult the Section 8-6 for abrasion design guidance.
6. Grades at Junctions - Pipe crowns, of differing diameter, branch or trunk lines should be at the same elevation when entering and exiting junctions. For pipes of the same diameter where a lateral is placed so the flow is directed against the main flow through the manhole or catch basin, the lateral invert must be raised to match the crown of the inlet pipe. Matching the crown elevation of the pipes, will prevent backflow in the smaller pipe. (A crown is defined as the highest point of the internal surface of the transverse cross section of a pipe.)
7. Minimum Pipe Diameter - The minimum pipe diameter shall be 12 inches (300 millimeters), except that single laterals less than 50 feet (15 meters) long may be 8 inches (200 millimeters) in diameter (some manufacturers are unable to add protective treatment for 8 inch storm drain pipe).
8. Structure Constraints - During the storm drain layout design, designers should also consider the physical constraints of the structure. Specifically:

- Diameter - Designers should verify the maximum allowable pipe diameter into a drainage structure prior to design. Some standard plans for drainage structures have pipe allowances clearly stated in tables for various pipe materials.
- Angle - Before finalizing the storm drain layout, designers should verify the layout is constructible with respect to the angle between pipes entering or exiting a junction. In order to maintain the structural integrity of a junction there are minimum clearance requirements that must be met depending on the pipe diameter. Designers can verify the minimum pipe angle with the Pipe Angle Calculation Worksheet located on the HQ Hydraulics web page at: ऊ www.wsdot.wa.gov/ Design/Hydraulics/ProgramDownloads.htm.

9. Pipe Material - Storm drains should be designed to include all Schedule A pipe options, unless specific site constraints limit options. See Section 6-8 for further discussion.
10. Increase in Profile Grade - In cases where the roadway or ground profile grades increase downstream along a storm drain, a smaller diameter pipe may be sufficient to carry the flow at the steeper grade. However, due to maintenance concerns, the Washington State Department of Transportation (WSDOT) design practices do not allow pipe diameters to decrease in downstream runs.

Consideration could be given in such cases to running the entire length of pipe at a grade steep enough to allow use of the smaller diameter pipe. Although this will necessitate deeper trenches, the trenches will be narrower for the smaller pipe and therefore the excavation may not substantially increase. A cost analysis is required to determine whether the savings in pipe costs will offset the cost of any extra structure excavation.
11. Outfalls - An outfall can be any structure (man-made or natural) where stormwater from WSDOT highways is conveyed off of the right of way (ROW.) Outfalls must conform to the requirements of all federal, state, and local regulations and be documented as described in Appendix 1-3 of this manual.

Additional considerations for outfalls include energy dissapators and tidal gates. Energy dissipators prevent erosion at the storm drain outfall, for design guidance see Section 3-4.7 of this manual. Installation of tide gates may be necessary when the outfall is in a tidal area, consult the Region Hydraulics Engineer for further guidance.
12. Location - Medians usually offer the most desirable storm drain location. In the absence of medians, a location beyond the edge of pavement on state right of way or on easements is preferable. It is generally recommended when a storm drain is placed beyond the edge of the pavement that a one-trunk system, with connecting laterals, be used instead of running two separate trunk lines down each side of the road.
13. Confined Space and Structures - Per WAC 296, any structure (catch basin, manhole, grate inlet, or underground detention vault) more than 4 feet in depth is considered a confined space. As such, any structure exceeding 4 feet in depth that could be accessed by personnel must be equipped with a ladder. To determine if personnel will access the structure or if a vactor hose will be used for maintenance, consult the local maintenance office. Structures over 15 feet in depth should be avoided due to the limitations of WSDOT vactor trucks. Any design requiring a structure deeper than 15 feet must consult the Region Hydraulics Office for design approval. Underground detention vaults should only be considered as a last resort due to the overall expense of maintenance. Designers should consult the Region Maintenance Office and Region Hydraulic Engineer before including a vault in any design.

6-3 Data for Hydraulics Report

The design of a storm drain system requires that data be collected and documented in an organized fashion. Hydraulics reports should include all related calculations (whether performed by hand or computer). See Appendix 1-3 of this manual for guidelines on what information should be submitted and recommendations on how it should be organized.

6-4 Storm Drain Design - Handheld Calculator Method

Storm drain design is accomplished in two parts: determine the pipe capacity and then evaluate the HGL. The steps outlined in this section provide the design guidance to determine the pipe capacity. In this section the pipes are designed under full flow conditions to verify the velocity requirements are met. For the HGL evaluated in Section 6-6, the actual surface water elevation in the pipe will be used to verify the system operates under gravity flow conditions.

6-4.1 General

Storm drain design can be accomplished with a handheld calculator using the Rational Method and Figure 6-4.1 to show calculations. Figure 6-4.1 has five divisions: Location, Discharge, Drain Design, Drain Profile, and Remarks. These divisions are further expanded in the subsections below.

6-4.2 Location

The Location section gives all the layout information of the drain.
Column 1 gives a general location reference for the individual drain lines, normally by the name of a street or a survey line.

Columns 2 and $\mathbf{3}$ show the stationing and offset of the inlets, catch basins, or manholes either along a roadway survey line or along a drain line.

6-4.3 Discharge

The Discharge section presents the runoff information and total flow into the drain.

Column 4 is used to designate the drainage areas that contribute to particular point in the drain system. The drainage areas should be numbered or lettered according to some reference system on the drainage area maps. The type of ground cover (pavement, median, etc.) may be indicated. Since drainage areas must be subdivided according to soil and ground cover types, a drainage area may have several different parts.

Column 5 shows the area of the individual drainage areas listed in Column 4 in acres (hectares).

Column 6 shows the Rational method runoff coefficient (see Chapter 2). Each individual drainage area must have a corresponding runoff coefficient.

Column 7 is the product of Columns 5 and 6 . Column 7 is also the effective impervious area for the subsection.

Column 8, the summation of CA, is the accumulation of all the effective impervious areas contributing runoff to the point in the system designated in Column 2. All the individual areas in Column 7 contributing to a point in Column 2 are summed. This would include runoff from upstream inlets that contribute to the pipe capacity.

Column 9 shows the time of concentration to the structure indicated in Column 2. Section 2-5.3 of this manual details how to calculate the time of concentration. Generally the time chosen here would be the longest time required for water to travel from the most hydraulically remote part of the storm drain system to this point. This would include flow over the drainage basin and flow through the storm drain pipes. The time of concentration should be expressed to the nearest minute and as discussed in Chapter 2 is never less than 5 minutes.

When the runoff from a drainage area enters a storm drain and the time of concentration (Tc) of the new area is shorter than the accumulated Tc of the flow in the drain line, the added runoff should be calculated using both values for Tc. First the runoff from the new area is calculated for the shorter Tc. Next the combined flow is determined by calculating the runoff from the new area using the longer Tc and adding it to the flow already in the pipe. The Tc that produces the larger of the two flows is the one that should be used for downstream calculations for the storm drain line.

The easiest method for determining the Tc of the flow already in the system (upstream of the structure in Column 2) is to add the Tc from Column 9 of the previous run of pipe (this value should be on the row above the row that is currently being filled in) to the time it took the flow to travel through the previous run of pipe. To determine the time of flow (or more correctly, the travel time) in a pipe, the velocity of flow in the pipe and the length of the pipe must be calculated. Velocity is computed using Manning's Equation and is found in Column 16 of the previous run of pipe. The length used is the value entered in Column 18 for the previous run of pipe. Obviously, this calculation is not performed for the very first (most upstream) run of pipe in a storm drain system.

$$
\mathrm{T}_{1}=\frac{\mathrm{L}}{60 \mathrm{~V}}
$$

Where:

$\mathrm{T}_{1}=$ time of concentration of flow in pipe in minutes
$\mathrm{L}=$ length of pipe in feet (meters) Column 18
$\mathrm{V}=$ velocity in $\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$ Column 16 of the previous run of pipe

The designer should note that this calculation assumes that the pipe is flowing full. It is accurate for pipes flowing slightly less than half full up to completely full. It will be slightly conservative for T_{c} calculations when the pipe is flowing significantly less than half full.

Column 10 shows the rainfall intensity corresponding to the time indicated in Column 9 and the location of the project.

The intensity is in inches per hour to the nearest hundredth for English units (millimeters per hour to the nearest tenth). The rainfall intensity used is a 25-year recurrence interval for storm drain laterals and trunks and the 10-year recurrence interval for laterals without trunks. See Chapter 2 for a complete description of how this intensity can be determined. Projects in eastern Washington should also consult Chapter 4 of the Highway Runoff Manual for further design guidance.

Column 11 shows the amount of runoff to the (nearest tenth of a cubic foot per second) (nearest hundredth of a cubic meter per second) up to the point indicated in Column 2. It is computed as the product of Columns 8 and 10. This is simply applying the rational method to compute runoff from all the drainage area upstream of the pipe being analyzed.

Column 12 shows any flow, other than the runoff calculated in Column 11, to the nearest tenth of a cubic foot per second (nearest hundredth of a cubic meter per second) that is entering the system up to the point indicated in Column 2. It is rare to have flow entering a system other than runoff from the drainage basin but this does occur. For instance, when an underdrain, which is draining groundwater, is connected to the storm drain. The label for this column indicates that these flows are considered constant for the duration of the storm so they are independent of the time of concentration.

This column is also used when the junction is a drywell and a constant rate of flow is leaving the system through infiltration. When this occurs the value listed in Column 12 is negative. See Section 6-7 for a complete discussion of drywells.

Column 13 is the sum of columns 11 and 12 and shows the total flow in cubic feet per second to the nearest tenth (cubic meters per second to the nearest hundredth) to which the pipe must be designed.

6-4.4 Drain Design Section

This section presents the hydraulic parameters and calculations required to design storm drain pipes.

Column 14 shows the pipe diameter in feet (millimeters). This should be a minimum of 8 inches or 0.67 feet (200 millimeters) for any pipe run with a length of 50 feet (15 meters) or less. Pipes runs longer than 50 feet (15 meters) must have a minimum diameter of 12 inches or 1 foot (300 millimeters). Pipe sizes should never decrease in the downstream direction.

The correct pipe size is determined through a trial and error process. The engineer selects a logical pipe size that meets the minimum diameter requirements and a slope that fits the general slope of the ground above the storm drain. The calculations in Column 17 are performed and checked against the value in Column 13. If Column 17 is greater than or equal to Column 13, the pipe size is adequate. If Column 17 is less than Column 13 the pipe does not have enough capacity and must have its diameter or slope increased after which Column 17 must be recalculated and checked against Column 13.

Column 15, the pipe slope, is expressed in feet per foot (meters per meter). This slope is normally determined by the general ground slope but does not have to match the surface ground slope. The designer should be aware of buried utilities and obstructions, which may conflict, with the placement of the storm drain.

Column 16 shows the full flow velocity. It is determined by Manning's Equation, which is shown below. The velocity is calculated for full flow conditions even though the pipe is typically flowing only partially full. Partial flows will be very close to the full flow velocity for depths of flow between 30 percent and 100 percent of the pipe diameter.

$$
\begin{align*}
& V=\frac{1.486}{n} R^{2 / 3} \sqrt{S}=\frac{1.486}{n}\left[\frac{D}{4}\right]^{2 / 3} \sqrt{S} \quad \text { (English Units) } \tag{6-1}\\
& V=\frac{1}{n} R^{2 / 3} \sqrt{S}=\frac{1}{n}\left[\frac{D}{4}\right]^{2 / 3} \sqrt{S} \quad \text { (Metric Units) }
\end{align*}
$$

```
Where:
    V = velocity in ft/s (m/s)
    D = pipe diameter in feet (meters)
    S = pipe slope in feet/foot (meters/meter)
    n = Manning's roughness coefficient (see Appendix 4-1)
```

Extremely high velocities should be avoided because of excessive abrasion in the pipe and erosion at the outlet of the system. Drop manholes should be considered for pipe velocities over 10 fps (3.0 meters per second). The engineer should also keep in mind that energy losses at junctions become significant above 6 feet per second (2 meters per second).

The minimum velocity as determined by this equation is 3 feet per second (1 meter per second).

Column 17, the pipe capacity, shows the amount of flow in cubic feet per second (cubic meters per second), which can be taken by the pipe when flowing full. It is computed using the following formula:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{VA}=\mathrm{V} \frac{\pi \mathrm{D}^{2}}{4} \tag{6-2}
\end{equation*}
$$

Where:

$Q=$ full flow capacity in cfs (cms)
$V=$ velocity as determined in Column $16 \mathrm{in} \mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$
$A=$ cross sectional area of pipe in feet squared (meters sq)
$D=$ diameter of pipe in feet (meters)

6-4.5 Drain Profile

Columns 18 through 23, the drain profile section, includes a description of the profile information for each pipe in the storm drain system. It describes the pipe profile and the ground profile. The ground elevations should be finished elevations, to the hundredth of a foot. The items in this section are generally self-explanatory. The only exception is Column 18, the length shown is the horizontal projection of the pipe, in feet (meters), from the center to center of appurtenances. Generally, profiles should be set to provide a minimum of 2 feet (0.6 meters) of cover over the top of the pipe, see Chapter 8 for further design guidance.

6-4.6 Remarks

Column 24, remarks, is for any information, which might be helpful in reviewing the calculations. This space should note unique features such as drop manholes, long times of concentration, changes in the type of pipe, or changes in design frequency.

6-5 Storm Drain Design - Computer Analysis

With the addition of personal computers to most engineering workstations, storm drain design by handheld calculator has become less prevalent. Storm drain design by computer analysis offers some distinct advantages over calculations performed by hand. Chief among these advantages is the decreased amount of time required to perform the pipe sizing and hydraulic grade line calculations and the reduced chance for calculation errors.

Some computer programs will use the Rational method for storm drain design while others will use a hydrograph method such as the SBUH method. Both of these methods are valid for WSDOT storm drain design; however, they will yield different peak runoff values. This is most distinct for drainage basins
that have very short times of concentration. As a basin's time of concentration extends beyond 15 minutes the two methods yield more similar answers. This difference in peak runoff values ends up having little effect on storm drain design since runoff from basins with short times of concentration tends to be small and the required pipe size is determined by the minimum allowable pipe size. As flows entering the system increase to the point that minimum pipe sizes are no longer the governing factor, the associated time of concentration becomes greater and the two methods produce similar peak flow rates.

There are several commercially available computer programs for storm drain design. Each of these programs has certain features that make them unique from other programs but the primary calculations are performed the same way. Because of this, nearly any commercially available computer programs that perform storm drain design are acceptable for designing WSDOT storm drains.

The HQ Hydraulics Office has purchased the computer program StormShed 3G for the Ferries Division and each WSDOT region to use whenever designing storm drains. Training material for StormShed 3G has been developed specifically for WSDOT applications and is available on the HQ Hydraulics web page or designers can consult the HQ Hydraulics Office for additional technical assistance. To attain the latest version of StormShed 3G software contact the HQ Hydraulics Office or your Region Hydraulic Engineer. Prior to using StormShed 3G, the distance between catch basins/manholes/inlets in every run of storm drains should be located using a Microsoft ${ }^{\circledR}$ Excel Pavement Drainage spreadsheet. A spreadsheet is available on the HQ Hydraulic web page at: © www.wsdot.wa.gov/eesc/ design/hydraulics. The spreadsheet lacks the advanced features found in commercially available computer programs but does offer a simple and effective way to locate storm drains.

6-6 Hydraulic Grade Line

The hydraulic grade line (HGL) should be designed so there is a space of air between the top of water and the inside of the pipe. In this condition the flow is operating as gravity flow and the HGL is the water surface elevation traveling through the storm drain system. If the HGL becomes higher than the crown elevation of the pipe the system will start to operate under pressure flow. If the system is operating under pressure flow, the water surface elevation in the catch basin/manhole needs to be calculated to verify the water surface elevation is below the rim (top) elevation. When the water surface elevation exceeds the rim elevation, water will discharge through the inlet and cause severe traffic safety problems. Fortunately, if the storm drain pipes were designed as discussed in the previous sections, then the HGL will only become higher than the catch basin/manhole rim elevation when energy losses become significant or if the cover over a storm drain is low (less than 5 feet).

Regardless of the design conditions, the HGL should always be evaluated especially when energy losses become significant. Possible situations where energy losses can become significant include: high flow velocities through the system (greater than $6.6 \mathrm{ft} / \mathrm{s}$), pipes installed under low cover at very flat gradients, inlet and outlet pipes forming a sharp angle at junctions, and multiple flows entering a junction.

The HGL can only be calculated after the storm drain system has been designed. When computer models are used to determine the storm drain capacity, the model will generally evaluate the HGL. The remainder of this section provides the details for how the analysis is performed.

The HGL is calculated beginning at the most downstream point of the storm drain (outfall) and ending at the most upstream point, which is exactly the opposite direction that was used to design the pipe sizes. To start the analysis, the water surface elevation at the storm drain outfall must be known. Refer to Chapter 3 for an explanation on calculating water surface elevations at the downstream end of a pipe (the tailwater is calculated the same for storm drain outfalls and culverts). Once the tailwater elevation is known, the energy loss (usually called head loss) from friction is calculated for the most downstream run of pipe and the applicable minor losses are calculated for the first junction upstream of the outfall. All of these head losses are added to the water surface elevation at the outfall to obtain the water surface elevation at the first upstream junction (also the HGL at that junction). The head losses are then calculated for the next upstream run of pipe and junction and they are added to the water surface elevation of the first junction to obtain the water surface elevation of the second upstream junction. This process is repeated until the HGL has been computed for each junction. The flow in most storm drainpipes is subcritical; however, if any pipe is flowing supercritical (see Chapter 4 for an explanation of subcritical and supercritical flow) the HGL calculations are restarted at the junction on the upstream end of the pipe flowing supercritical. The HGL calculation process is represented in the following equation:

$$
\begin{align*}
& \text { WSEL }_{J 1}=\text { WSEL }_{o U T F A L L}+H_{f 1}+H_{e 1}+H_{e x 1}+H_{b 1}+H_{m 1} \tag{6-3}\\
& \text { WSEL }_{J 2}=\text { WSEL }_{J 1}+H_{f 2}+H_{e 2}+H_{e x 2}+H_{b 2}+H_{m 2} \\
& \ldots \\
& \text { WSEL } \\
& \text { Where: } \\
& \text { WSEL }
\end{align*}
$$

As long as the HGL is lower than the rim elevation of the manhole or catch basin, the design is acceptable. If the HGL is higher than the rim elevation, flow will exit the storm drain and the design is unacceptable. The most common way to lower the HGL below the rim elevation is to lower the pipe inverts for one or more runs of the storm drain or increase the pipe diameter.

6-6.1 Friction Losses in Pipes

Head loss due to friction is a result of the kinetic energy lost as the flow passes through the pipe. The rougher the pipe surface is, the greater the head loss is going to be. Head loss from friction can be calculated with the following equation.

$$
\begin{aligned}
& H_{f}=L\left[\frac{2.15 \mathrm{Qn}}{\mathrm{D}^{2.667}}\right]^{2} \quad \text { (English Units) } \\
& \mathrm{H}_{\mathrm{f}}=\mathrm{L}\left[\frac{3.19 \mathrm{Qn}}{\mathrm{D}^{2.667}}\right]^{2} \quad \text { (Metric Units) } \\
& \text { Where: } \\
& H_{f}=\text { head loss due to friction in feet (meters) } \\
& \mathrm{L}=\text { length of pipe in feet (meters) } \\
& \mathrm{Q}=\text { flow in pipe in cfs (cms) } \\
& n=\text { Manning's roughness coefficient (see Appendix 4-1) } \\
& \mathrm{D}
\end{aligned}
$$

6-6.2 Junction Entrance and Exit Losses

When flow enters a junction, it loses all of its velocity. As a result, there is an associated head loss equal to one velocity head. Then when the flow exits the junction and accelerates into the next pipe, there is another head loss equal to approximately half of one velocity head. These two head losses can be represented with the following equations (Metric and English units use the same equations).

$$
\begin{align*}
& H_{e}=\frac{V_{2}{ }^{2}}{2 g} \tag{6-5}\\
& H_{e x}=1.0\left(\frac{V^{2}}{2 g}-\frac{V_{d}{ }^{2}}{2 g}\right) \approx \frac{V^{2}}{4 g}
\end{align*}
$$

Where:

$\mathrm{H}_{\mathrm{e}}=$ head loss from junction entrance in feet (meters)
$H_{\text {ex }}=$ head loss from junction exit in feet (meters)
$\mathrm{V}=$ flow velocity in pipe in feet per second (m / s)
$V_{d}=$ channel velocity downstream of outlet in feet per second (m/s)
g = gravitational acceleration constant

6-6.3 Losses From Changes in Direction of Flow

When flow changes direction inside of a junction, there is an associated head loss. The amount of head loss that will occur is dependent on how great the change is. As the angle between the inflow and outflow pipes increase, the amount of head loss increases. This head loss can be calculated with Equation 6-6 (metric and English units use the same equation).

$$
\begin{equation*}
H_{b}=K_{c} \frac{v^{2}}{2 g} \tag{6-6}
\end{equation*}
$$

Where:
$H_{b}=$ head loss from change in direction in feet (meters)
$\mathrm{K}_{\mathrm{b}}=$ head loss coefficient for change in direction, see below:

K_{b}	Angle of Change in Degrees
0.00	0
0.19	15
0.35	30
0.47	45
0.56	60
0.64	75
0.70	90 and greater

Changes in Direction of Flow
Figure 6-6.3

6-6.4 Losses From Multiple Entering Flows

When flow enters a junction from more than one pipe there is an associated head loss. The head loss is dependent on the amount of flow in each pipe and the direction flow enters the junction through each pipe. Once the angle is determined, this head loss can be calculated with the following equation (Metric and English units use the same equation).

$$
\begin{equation*}
H_{m}=\frac{Q_{2} V_{2}^{2}-Q_{1} V_{1}^{2}-\cos \phi Q_{3} V_{3}^{2}}{2 g Q_{2}} \tag{6-7}
\end{equation*}
$$

Where:

$$
H_{m}=\text { head loss from multiple flows in feet (meters) }
$$

Multiple Flows Entering a Junction Figure 6-6.4

6-7 Drywells

A drywell is an underground structure that is typically precast with perforations along the structure walls and bottom that allow stormwater runoff to flow directly into the ground. Drywells can be stand alone structures or installed as part of a storm drain system. The primary advantage of drywells is that they reduce flooding by discharging flow into groundwater instead of discharging it to surface waters such as rivers and creeks. Also, when allowed as part of a storm drain system, the drywell reduces the flow which can reduce the size of the pipes in the system. Standard Plan B-20.20 of the WSDOT Standard Plans for Road, Bridge, and Municipal Construction depicts a typical drywell. Additional information about the appropriate geotextile (Class A Underground drainage with moderate survivability) to select for the installation of the drywell is located in the Standard Specifications for Road, Bridge, and Municipal Construction, Sections 9-33 and 9-03.12(5).

Prior to specifying a drywell in a design, designers should consult the Highway Runoff Manual for additional guidance and design criteria. Drywells are considered Underground Injection Control Wells (UICs) and are required to be registered with DOE per WAC 173-218, see Section 4-5.4 of the Highway Runoff Manual. Additionally, stormwater must be treated prior to discharging into a drywell using a Best Management Practice described in Chapter 5 of the Highway Runoff Manual. Finally, all drywells should be sized following the design criteria outlined in Section 4-5.4.2 of the Highway Runoff Manual.

6-8 Pipe Materials for Storm Drains

When designing a storm drain network, the designer should review Section 8-2 (Pipe Materials), as well as the list of acceptable pipe material (Schedule Pipe) in Section 7-04 (Storm Sewers) of the Standard Specifications. Storm drain pipe is subject to some use restrictions, which are detailed in Section 8-1.4 (Storm Sewer Pipe) of this manual.

Pipe flow capacity depends on the roughness coefficient, which is a function of pipe material and manufacturing method. Fortunately, most storm drain pipes are 24 inches (600 millimeters) in diameter or less and studies have shown that most common schedule pipe materials of this size range have a similar roughness coefficient. For calculations, the designer should use a roughness coefficient of 0.013 when all schedule pipes 24 inches (600 millimeters) or smaller are acceptable. For larger diameter pipes, the designer should calculate the required pipe size using the largest Manning's Roughness Coefficient for all the acceptable schedule pipe values in Appendix 4-A of this manual. In the event a single pipe alternative has been selected, the designer should design the required pipe size using the applicable Manning's Roughness Coefficient for that material listed in Appendix 4-A.

In estimating the quantity of structure excavation for design purposes at any location where alternate pipes are involved, estimate the quantity of structure excavation on the basis of concrete pipe since it has the largest outside diameter.

6-9 Subsurface Drainage

Subsurface drainage is provided for control of groundwater encountered at highway locations. Groundwater, as distinguished from capillary water, is free water occurring in a zone of saturation below the ground surface. The subsurface discharge depends on the effective hydraulic head and on the permeability, depth, slope, thickness, and extent of the aquifer.

The solution of subsurface drainage problems often calls for specialized knowledge of geology and the application of soil mechanics. The designer should work directly with the Region Materials Engineer as subsurface conditions are determined and recommendations are made for design in the soil's report.

Subsurface drainage can be intercepted with underdrain pipe that is sized by similar methods used to design storm drain pipes. There are two different methods, recommended in this manual that are used to size underdrains depending on the application.

1. When an underdrain is installed for control of seepage in cuts or side hills or the lowering of the groundwater table for proper subgrade drainage, the design method used to size storm drains should be followed. The only difference is that the flow used for the calculations is the predicted infiltration from groundwater into the system instead of flow entering the system from roadway drainage. When subsurface drainage is connected to a storm drain system, the invert of the underdrain pipe shall be placed above the operating water level in the storm drain. This is to prevent flooding of the underdrain system which would defeat its purpose.
2. The second method involves underdrains installed in combination with a BMP or hydraulic feature such as: media filter drains, swales, ditches, and infiltration trenches as shown in Figure 6-9.1. For these applications, underdrain should be sized so water drains from the bedding material substantially faster than water enters the soil layer above. To achieve this, a factor or safety is applied to the inflow as is described on the next page.

Underdrain Installation in Combination with a BMP or Hydraulic Feature Figure 6-9.1

The following steps should be used to size an underdrain:

1. Determine the runoff volume $(\mathrm{Vud})\left(\mathrm{ft}^{3}\right)$ from the basin contributing to the underdrain. The design event used to size the BMP or hydraulic feature should be used to determine the runoff volume.
2. Specify the maximum designed depth of ponding water $\left(\mathrm{D}_{\text {ponding }}\right)(\mathrm{ft})$ in the BMP or hydraulic feature above the underdrain (ft). This can be calculated using StormShed or following the design guidance in the Highway Runoff Manual for the applicable BMP. For media filter drains, use 12 inches.
3. Determine the cross sectional area $(\mathrm{A})\left(\mathrm{ft}^{2}\right)$ of the flow by dividing the runoff volume by the depth of ponding water.

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{V}_{\mathrm{ud}}}{\mathrm{D}_{\text {ponding }}} \tag{6-8}
\end{equation*}
$$

4. Determine infiltration rate (rate runoff moves through the soil) using Darcy's Equation or use infiltration rate from lab.

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{K} \Delta \mathrm{H}}{\mathrm{~L}} \tag{6-9}
\end{equation*}
$$

Where:
$\mathrm{q}=$ flow per cross sectional area (in/hr per unit)
$\mathrm{K}=$ hydraulic conductivity (in/hr)
$\Delta \mathrm{H}=$ change in head (ft) at the height of water from ponding depth to top of bedding material
$\mathrm{L}=$ thickness of soil layer (ft)
5. The total flow to the underdrain is based on the rate runoff moves through soil and the basin area contributing to the BMP or hydraulic feature.

$$
\begin{equation*}
\mathrm{Q}=\mathrm{q} \times \mathrm{A} \tag{6-10}
\end{equation*}
$$

Where:
$Q=$ total flow to underdrain (cfs)
$\mathrm{q}=$ flow per cross sectional area (in/hr per unit)
$\mathrm{A}=$ cross sectional area of the ditch/swale
6. Determine the design flow Q_{df}, by applying a Factor of Safety $(\mathrm{FS})=2$ to Q, so pipe is sized to carry 2 times the total flow.

$$
\begin{equation*}
Q_{\mathrm{df}}=\mathrm{Q} \times 2 \tag{6-11}
\end{equation*}
$$

Where:
$\mathrm{Q}_{\mathrm{df}}=$ underdrain design flow (cfs)
$Q=$ flow total flow to underdrain (cfs)
7. Given design flow, determine the pipe diameter. For pipe diameters that exceed $12^{\prime \prime}$, contact either the region or HQ Hydraulics.

$$
\begin{equation*}
\mathrm{D}=16\left(\frac{\left(\mathrm{Q}_{\mathrm{df}} \times \mathrm{n}\right)}{\mathrm{s}^{0.5}}\right)^{3 / 8} \tag{6-12}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{D}=\text { underdrain pipe diameter (inches) } \\
& \mathrm{n}=\text { Manning's coefficient (use 0.010-0.011 for smooth wall) } \\
& \mathrm{s}=\text { slope of pipe (ft/ft) }
\end{aligned}
$$

Sample Problem

An underdrain will be located under a ditch that can intercept runoff from a road that is $1,000 \mathrm{ft}$ by 34 ft . The Materials Lab has determined the ditch has a hydraulic conductivity of $2.9 \mathrm{in} / \mathrm{hr}$. Assume the soil layer will be 2 ft deep and the slope of the underdrain pipe will be set at 0.5 percent. Determine the size of underdrain needed.

1. The runoff volume (Vud) (ft3) was determined to be $2,875 \mathrm{cu} \mathrm{ft}$. The value was determined using the 10-year design event to size the ditch and StormShed 3G.
2. The maximum depth of ponding water (Dponding) (ft) in the ditch was determined to be 4 inches using StormShed.
3. Determine the cross sectional area $(\mathrm{A})\left(\mathrm{ft}^{2}\right)$ of the flow.

$$
\begin{aligned}
& A=\frac{V_{u d}}{D_{\text {ponding }}} \\
& A=\frac{2,875 \mathrm{cu} \mathrm{ft}}{0.33 \mathrm{ft}}=8,712 \mathrm{sq} \mathrm{ft}
\end{aligned}
$$

4. Determine the infiltration rate.

$$
\begin{aligned}
& \mathrm{q}=\frac{\mathrm{K} \Delta \mathrm{H}}{\mathrm{~L}} \\
& \mathrm{q}=\frac{2.9 \mathrm{in} / \mathrm{hr} \times 2.33 \mathrm{ft}}{2 \mathrm{ft}}=3.38 \mathrm{in} / \mathrm{hr}
\end{aligned}
$$

5. The total flow to the underdrain is based on the rate runoff moves through soil and basin area contributing to the BMP or hydraulic feature.

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{q} \times \mathrm{A} \\
& \mathrm{Q}=3.38 \mathrm{in} / \mathrm{hr} \times 8,712 \mathrm{sq} \mathrm{ft} \times 1 \mathrm{ft} / 12 \mathrm{in}=0.68 \mathrm{cfs}
\end{aligned}
$$

6. Determine design flow Qdf, by applying a Factor of Safety $(F S)=2$.

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{df}}=\mathrm{Q} \times 2 \\
& \mathrm{Q}_{\mathrm{df}}=0.68 \mathrm{cfs} \times 2=1.36 \mathrm{cfs}
\end{aligned}
$$

7. Given design flow, determine the pipe diameter.

$$
\begin{aligned}
& D=16\left(\frac{\left(Q_{d f} \times n\right)}{\mathrm{s}^{0.5}}\right)^{3 / 8} \\
& D=16\left(\frac{(1.36 \times 0.011)}{(0.005)^{0.5}}\right)^{3 / 8}=8.94 \mathrm{in}
\end{aligned}
$$

Upsize pipe diameter to the next available size, which is 10 inches.

7-1 Introduction

Most rivers and creeks in Washington State contain one or more species of fish during all or part of the year. These fish must be allowed to freely migrate up and down the streams they occupy. If roadways are constructed across the stream without thought given to fish passage, the roadway could create a migration barrier. However, a stream crossing designed with consideration of fish will not hinder migration. The Washington State Department of Transportation (WSDOT) and the Washington State Department of Fish and Wildlife (WDFW) have been evaluating existing stream crossings through a cooperative Fish Passage Barrier Removal Program since 1991. Some of the fish barriers have been identified for repair and a few of those have been retrofitted and/or replaced. Prior to starting a project, designers should consult the following Web link to determine if their project contains a known fish barrier: ऊ www.wsdot.wa.gov/NR/rdonlyres/F9743AD2-B4DB-439E-91C5-B973CBF 17506/0/FishPassageRpt08.pdf.

WDFW developed guidelines for permanent road crossing culverts to facilitate upstream fish migration titled "Design of Road Culvert for Fish Passage." The guideline provides direction for projects involving new culvert construction as well as retrofitting or replacing existing culverts.

The purpose of this chapter is to summarize the WDFW design approaches, note the type of structures recommended, and reference grade control. For guidance, designers should consult the WDFW "Design of Road Culverts for Fish Passage" guideline at the following web page: ऊ www.wdfw. wa.gov/hab/engineer/cm/. Questions should be directed to the Region Hydraulics Engineer.

7-2 Designing for Fish Passage

7-2.1 General

The basic concept used to ensure continued fish passage is to design the stream crossing to match the natural river or creek channel as much as practical. The idea being if fish migration occurred in the crossing prior to construction, then migration should continue after construction (in other words post construction flow conditions should be similar to preconstruction or natural flow conditions). For some types of crossing structures, it is easy to create flow conditions exactly like the natural flow conditions. But for other types of crossing structures, a detailed analysis is necessary to accomplish an acceptable design. The first step in designing for fish passage is to determine which, if any, species of fish are in the stream. WSDOT

Regional Environmental staff is the primary contact for this information and will contact the WDFW when necessary. The design criterion varies depending on the species of fish since the swimming and leaping ability of fish varies from species to species. Additionally, different species migrate through the stream during different times of the year and, as a result, the design flow used for the analysis must correlate with the time of year that the fish are migrating.

7-2.2 Types of Structures

For fish passage purposes, there are three basic types of stream crossing structures:

1. Bridges - Structures that have piers or abutments supporting some type of girder system. Bridges do not have a significant impact on fish migration and are the preferred method of spanning a body of water. HQ Hydraulics is responsible for all water elements concerning bridge design.
2. Open Bottom Culverts - Metal and concrete arches or three-sided concrete frame structures that have no floor and are supported by footings.
3. Full Culverts - Metal, concrete, and plastic round, pipe arch, elliptical, and box-shaped culverts that are completely enclosed self-supporting structures.

7-2.3 Culvert Design Approach

Adequate fish passage for open bottom or full culverts can be determined using one of the three different design options described below. Independant of which option is selected, designers will also need to evaluate the culvert design using the guidelines described in Chapter 3 of this manual. Figures 3-2.3 and 3-2.4 provide a list of field data and other information that is required for a culvert analysis and hydraulic report.

1. No-Slope Design Option - Results in reasonably-sized culverts without requiring much in the way of calculations. It is most effective for relatively short culverts at low-gradient sites. Culverts are typically larger than the hydraulic option; however, the design avoids the additional cost of surveying and engineering.
2. Stream Simulation Design Option - A design method used to create or maintain natural stream processes in a culvert. This method is usually the preferred alternative for steep channels and long crossings.

The streambed mix placed inside the culvert should emulate that found in the natural channel. The guidelines in the "Culvert-Bed Design" section of Chapter 6 in the WFDW "Design of Road Culverts for Fish Passage (2003)" document, describe how to size the streambed gravel.
3. The Hydraulic Design Option - A design method that is based on swimming abilities of a target fish species and age class. This method requires hydrologic, open-channel hydraulic calculations and specific site data. The hydraulic design option typically results in smaller culverts than the no-slope option. The analysis is based on velocity, depth, and maximum turbulence requirements for a target species and age class. When this option is selected, designers should not use MGSFlood to determine fish passage flow rates.

In eastern Washington when the hydraulic option is selected, WDFW recommends the research approach developed by E. R. Rowland. This approach defines fish passage design per unit drainage area and is further discussed in the WDFW "Design of Road Culverts for Fish Passage Guidelines (2003)" under the hydraulic design option section. Fish passage flow rates for eastern Washington can also be found in ArcMap under the WSDOT GIS Environmental Workbench Fish and Wildlife Fish section.

For additional guidance, designers can also consult the following WSDOT research documents developed for the hydraulic design option:
a. Modeling Hydrology for Design of Fish Passage (WA-RD 545.1).
b. Culvert Design Flows for Fish Passage and Structural Safety in East Cascade and Blue Mountain Streams (WA-RD 545.2).

7-2.4 River Training Devices

River training devices can also be used for fish passage as well as to protect streambanks by redirecting the flow away from the bank towards the center of the channel. The most common types of devices are made of rock, timber, or concrete and reach from bank to bank. Designers should consult Chapter 4 for further design guidance.

WDFW has also developed guidelines for managing streambanks titled "Integrated Streambank Protection Guidelines," located at the following web link: 色 www.wdfw.wa.gov/hab/ahg/ispgdoc.htm. Designers should direct questions to the Region Hydraulics Engineer.

Contents

Chapter 8 Pipe Classifications and Materials 1
8-1 Classifications of Pipe 1
8-1.1 Drain Pipe 2
8-1.2 Underdrain Pipe 2
8-1.3 Culvert Pipe 3
8-1.4 Storm Sewer Pipe 7
8-1.5 Sanitary Sewer Pipe 9
8-2 Pipe Materials 9
8-2.1 Concrete Pipe 10
8-2.2 Metal Pipe - General 12
8-2.3 Thermoplastic Pipe - General 15
8-2.4 Ductile Iron Pipe 19
8-2.5 Solid Wall HDPE. 20
8-3 Vacant 20
8-4 Pipe Corrosion Zones and Pipe Alternate Selection 20
8-4.1 Corrosion Zone I 21
8-4.2 Corrosion Zone II 22
8-4.3 Corrosion Zone III 22
8-5 Corrosion 30
$8-5.1 \mathrm{pH}$ 30
8-5.2 Resistivity 31
8-5.3 Methods for Controlling Corrosion 31
8-6 Abrasion 33
8-7 Pipe Joints 35
8-8 Pipe Anchors 36
8-8.1 Thrust Blocks 36
8-9 Pipe Rehabilitation and Abandonment 36
8-9.1 Pipe Replacement 37
8-9.2 Trenchless Techniques for Pipe Replacement 37
8-9.3 Abandoned Pipe Guidelines 39
8-10 Pipe Design 39
8-10.1 Categories of Structural Materials 39
8-10.2 Structural Behavior of Flexible Pipes. 39
8-10.3 Structural Behavior of Rigid Pipes 41
8-10.4 Foundations, Bedding, and Backfill 41
8-11 Structural Analysis and Fill Height Tables 42
8-11.1 Pipe Cover 43
8-11.2 Shallow Cover Installation 43
8-11.3 Fill Height Tables 44

The Washington State Department of Transportation (WSDOT) utilizes a number of different types of pipe for highway construction activities. In order to simplify contract plan and specification preparation, pipes have been grouped into five primary categories; drain pipe, underdrain pipe, culvert pipe, storm sewer pipe and sanitary sewer pipe. Each category is intended to serve specific purposes and is described further in Section 8-1.

Within each pipe classifications there are several types of pipe materials that may be used, each with unique characteristics used in different conditions. Pipe material selection includes hydraulic characteristics, site conditions, geologic conditions, corrosion resistance, safety considerations and cost. Section 8-2 provides a detailed discussion of the different pipe materials that are generally used in WSDOT design.

The type of material that is appropriate for a project is dependant on several factors: including but not limited to: fill height (Section 8-11), the required size (Chapter 3) and strength of the pipe, corrosion and abrasion potential (Section 8-4 through 8-6), fish passage (Chapter 7), debris passage, and necessary end treatments (Chapter 3). Except for sizing the pipe, end treatments, and fish passage, each of these issues is further discussed in this chapter along with guidelines to assist the designer in selecting the material for a pipe that is appropriate for a project site and application (Section 8-4).

This chapter also provides additional information about joining pipe materials, use of pipe anchors, acceptable forms of pipe rehabilitation, abandoned pipe guidelines, and design and installation techniques for pipe.

Pipe producers follow specifications (ASTM, AASHTO, AWWA) covering the manufacture of pipes and specify parameters like cell class, material strength, internal diameter, loadings, and wall thickness. When these standards are referenced, the current year standards shall apply.

8-1 Classifications of Pipe

This section examines the five primary categories of pipes utilized in WSDOT projects; drain pipe, underdrain pipe, culvert pipe, storm sewer pipe and sanitary sewer pipe.

8-1.1 Drain Pipe

Drain pipe is small diameter pipe (usually less than 24 inch (600 mm)) and is used to convey roadway runoff or groundwater away from the roadway profile. Drain pipe is not allowed to cross under the roadway profile and is intended to be used in locations that can be accessed easily should it become necessary to maintain or replace the pipe. The minimum design life expectancy is 25 years and no protective treatment is required.

Typical drain pipe applications include simple slope drains and small diameter "tight lines" used to connect underdrain pipe to storm sewers. Slope drains generally consist of one or two inlets with a pipe conveying roadway runoff down a fill slope. These drain pipes are relatively easy to install and are often replaced when roadway widening or embankment slope grading occurs. Slope drains are generally most critical during the first few years after installation, until the slope embankment and vegetation have had a chance to stabilize.

Drain pipe smaller than 12 inch (300 mm) can withstand fill heights of 30 feet (10 meters) or more without experiencing structural failure. All of the materials listed in Division 7-01 of WSDOT's Standard Specifications are adequate under these conditions. For drain pipe applications utilizing pipe diameters 12 inch (300 mm) or larger, or with fill heights greater than 30 feet (10 meters), the designer should specify only those materials that are listed in both Division 7-01 of the Standard Specifications and the fill height tables of Section 8-11.

8-1.2 Underdrain Pipe

Underdrain pipe is small diameter perforated pipe intended to intercept groundwater and convey it away from areas such as roadbeds or from behind retaining walls.

Typical underdrain applications utilize 6 to 8 inch (150 to 200 mm) diameter pipe, but larger diameters can be specified. The minimum design life expectancy is 25 years, and no protective treatment is required. Division 7-01 of the Standard Specifications lists applicable materials for underdrain pipe.

Underdrain pipe is generally used in conjunction with well-draining backfill material and a construction geotextile. Details regarding the various applications of underdrain pipe are described in WSDOT Design Manual Chapter 530 and WSDOT CADD Detail Library.

8-1.3 Culvert Pipe

A culvert is a conduit under a roadway or embankment used to maintain flow from a natural channel or drainage ditch. Culverts are generally more difficult to replace than drain pipe, especially when located under high fills or major highways. Because of this, a minimum design life expectancy of 50 years is required for all culverts. Metal culvert pipes require a protective coating at some locations. Details are described in Section 8-5.3.1.

The maximum and minimum fill heights over a pipe material are shown in the tables of Section 8-11. For materials or sizes not shown in the tables of Section 8-11, contact the HQ Hydraulics Office or section 7-02 of the Standard Specifications.

The hydraulic design of culverts is discussed in Chapter 3. In addition to the hydraulic constraints of a location, the final decision regarding the appropriate culvert size to be used may be governed by fish passage requirements as discussed in Chapter 7.

Culvert shapes, sizes, and applications can vary substantially from one location to another. Listed below is a discussion of the various types of culverts that may appear on a typical contract.

8-1.3.1 Circular and Schedule Culvert Pipe

Circular culvert pipe from 12 inch (300 mm) to 48 inch (1200 mm) in diameter is designated as "schedule pipe" and should be selected unless a pipe material is excluded for engineering reasons. The pipe schedule table listed in Division 7-02 of the Standard Specification, includes all of the structurally suitable pipe alternates available for a given culvert diameter and fill height. Additionally, Figures 8-4.1B, .2B, and .3B provide the designer with a list of pipe alternatives and protective treatment depending on the corrosion zone. All schedule pipe shall be installed in accordance with Section 8-10.4.

Schedule culvert pipe should be specified as "Schedule \qquad Culv. Pipe \qquad in (mm) Diam." on the contract plan sheets. Schedule pipe must be treated with the same protective coatings as other culvert pipe.

The type of material for circular culvert pipe from 54 inch (1350 mm) to 120 inch $(3000 \mathrm{~mm})$ shall be designated on the plan sheets. The structure notes sheet should include any acceptable alternate material for that particular installation. A schedule table for these large sizes has not been developed due to their limited use. Also, structural, hydraulic, or aesthetic issues may control the type of material to be used at a site, and a specific design for each type of material available is generally necessary.

8-1.3.2 Pipe Arches

Pipe arches, sometimes referred to as "squash pipe," are circular culverts that have been reshaped into a structure that has a circular top and a relatively flat, wide bottom. For a given vertical dimension, pipe arches provide a larger hydraulic opening than a circular pipe. This can be useful in situations with minimal vertical clearances. Pipe arches also tend to be more effective than circular pipe in low flow conditions (such as fish passage flows) because pipe arches provide a majority of their hydraulic opening near the bottom of the structure, resulting in lower velocities and more of the main channel being spanned.

The primary disadvantage to using pipe arches is that the fill height range is somewhat limited. Due to the shape of the structure, significant corner pressures are developed in the haunch area as shown in Figure 8-1.3.2. The ability of the backfill to withstand the corner pressure near the haunches tends to be the limiting factor in pipe arch design and is demonstrated in the fill height tables shown in Section 8-11.

Typical Soil Pressure Surrounding a Pipe Arch

Figure 8-1-3.2

8-1.3.3 Structural Plate Culverts

Structural plate culverts are steel or aluminum structures that are delivered to the project site as unassembled plates of material and are then bolted together. Structural plate culverts are typically large diameter (from 10 feet (3 meters) to 40 feet (12 meters) or more) and are available in a number of different shapes including circular, pipe-arch, elliptical, and bottomless arch with footings. These structures are generally designed to span the main channel of a stream and are a viable option when fish passage is a concern.

The material requirements for structural plate culverts are described in Division 7-03 of the Standard Specifications. Aluminum structural plate culverts can be used anywhere in the state, regardless of the corrosion zone. Steel structure plate culverts are not permitted in salt water or Corrosion Zone III, as described in Section 8-4. The protective coatings described in Section 8-5.3.1 should not be specified for use on these types of culverts because the coatings interfere with the bolted seam process. In order to compensate for the lack of protective treatment, structural plate furnished in galvanized steel shall be specified with $1.5 \mathrm{oz} / \mathrm{ft}^{2}\left(460 \mathrm{~g} / \mathrm{m}^{2}\right)$ of galvanized coating on each surface of the plate (typical galvanized culvert pipe is manufactured with $1 \mathrm{oz} / \mathrm{ft}^{2}\left(305 \mathrm{~g} / \mathrm{m}^{2}\right)$ of galvanized coating on each surface of the pipe). The designer of structural plate culverts may also add extra plate thickness to the bottom plates to compensate for corrosion and abrasion in high-risk areas. Increasing the gauge thickness in this manner can provide a service life of 50 years or more for a very small increase in cost.

To prevent excessive deflection due to dead and/or live loads on larger structural plate culverts, longitudinal or circumferential stiffeners are sometimes added. Circumferential stiffeners are usually metal ribs bolted to the outside of the culvert. Longitudinal stiffeners may be metal or reinforced concrete thrust beams, as shown in Figure 8-1.3.3. The thrust beams are added to the structure prior to backfill. Concrete thrust beams provide some circumferential stiffening as well as longitudinal stiffening. They also provide a solid vertical surface for soil pressures to act on and a surface, which is easier to backfill against.

Concrete Thrust Beams Used as Longitudinal Stiffeners
Figure 8-1.3.3

Another method that can be used to diminish the loads placed on large span culverts is to construct a reinforced concrete distribution slab over the top of the backfill above the culvert. The distribution slab is generally used in low-cover applications and serves to distribute live loads out into the soil column adjacent to the culvert. The HQ Hydraulics Office should be consulted to assist in the design of this type of structure.

8-1.3.4 Private Road Approach and Driveway Culverts

The requirements for culverts placed under private road approaches and driveways are less stringent than the requirements for culverts placed under roadways. Private road approach and driveway culverts are off of the main line of the highway, so very little hazard is presented to the traveling public if a failure occurs. Also, in many instances it is difficult to provide a minimum 2 feet (0.6 m) of cover over the top of these culverts. Therefore, private road approach and driveway culverts can be specified without the protective treatments described in Section 8-5.3.1, and the minimum fill heights listed in Section 8-11 can be reduced to 1 foot $(0.3 \mathrm{~m})$. If fill heights less than 1 foot $(0.3 \mathrm{~m})$ are expected, concrete pipe of the class described in Fill Height Table 8-11.2 should be specified. Designers should follow the same recommendations for material and design life as noted in Section 8-1.1, Drain Pipe.

The designer is cautioned that structural failure may occur on some private road approaches or driveways if the right combination of fill height, live load, soil conditions, and pipe material are present. If live loads approaching the AASHTO HS-25 loading will consistently be traveling over the culvert and if the fill height is less than 2 feet $(0.6 \mathrm{~m})$, it is highly recommended that only concrete pipe of the class described in Fill Height table 8-11.2 be specified.

8-1.3.5 Concrete Box Culverts

Concrete box culverts are either cast-in-place or precast. All precast box culverts shall be installed in accordance with the manufacturer's recommendations.

For extending or new construction of cast-in-place box culverts, please contact HQ Hydraulics. The dimensions and reinforcement requirements for precast box culverts are described in one of two specifications produced by the Association of State Highway and Transportation Officials (AASHTO). AASHTO M 259 describes precast box culverts with fill heights ranging from 2 feet to 20 feet (0.6 to 6 meters). AASHTO M 259 describes precast box culverts with fill heights less than 2 feet (0.6 m). See Section 8-11.2 for additional guidance on the use of concrete
structures in shallow cover applications. If a precast box culvert is specified on a contract, the appropriate AASHTO specification should be referenced, along with a statement requiring the contractor to submit engineering calculations demonstrating that the box culvert meets the particular requirements of the AASHTO specification.

8-1.3.6 Concrete Three-sided Box Culverts

Concrete three-sided structures refer to either rectangular or arch shaped structures that are precast with reinforced concrete. The structures are generally supported by concrete footings, but can be fabricated with a full floor section if necessary. When footings are used, the footing slope should not be greater than 4% in the direction parallel to the channel. The structures are well suited for low cover applications where a relatively wide hydraulic opening must be provided. They can be specified with as little as zero cover and span lengths up to 26 feet (8 meters). It is possible to utilize structures with greater span lengths, but the design for those structures must be coordinated with the Bridge and Structures Office. The structures can be installed very quickly, often within one to two days, which can significantly decrease road closures or traffic delays. In addition to the hydraulic opening required, a location must be evaluated for suitability of the foundation material, footing type and size, and scour potential. The HQ Hydraulics Office should be contacted to perform the necessary scour analysis.

8-1.4 Storm Sewer Pipe

A storm sewer (also referred to as a storm drain in this manual) is defined as two inlet structures, connected by pipe for the purpose of collecting pavement drainage. Storm sewers are usually placed under pavement in urbanized areas and for this reason are very costly to replace. The minimum design life of a storm sewer pipe is 50 years.

Storm sewer pipe from 12 inch (300 mm) to 48 inch (1200 mm) in diameter is designated as "schedule pipe" and should be selected unless a pipe material is excluded for engineering reasons. The pipe schedule table is listed in Division 7-04 and section 9-05 the Standard Specifications and lists all of the structurally suitable pipe alternates available for a given culvert diameter and fill height. Additionally, Figures $8-4.1 \mathrm{~B}, .2 \mathrm{~B}$, and .3 B provide the designer with a list of pipe alternatives and protective treatments depending on the corrosion zone. All schedule pipe shall be installed in accordance with Section 8-10.4.

All storm sewer pipes, unless indicated otherwise on the plans, must be pressure tested. Pressure testing is required primarily to indicate the presence of leaking seams or joints or other structural failures that may have occurred during the manufacturing or installation of the pipe. Division 7-04 of the Standard Specifications describes three types of pressure tests that are available. The contractor generally has the option of choosing which pressure test to perform. The tests include:

Exfiltration: The section of pipe to be tested is filled with water, and an apparatus is connected to the upper end of the pipe so that an additional 6 feet (2 m) of water column is placed on the test section. The leakage out of the pipe is measured, and must be less than the allowable leakage described in the Standard Specifications.

Infiltration: This test is intended for situations where the groundwater table is above the crown of the upper end of the pipe test section. Once the pipe has been installed, the amount of water leaking into the pipe is collected and measured, and must be less than the allowable leakage rate described in the Standard Specifications.

Low Pressure Air: The section of pipe to be tested is plugged on both ends and compressed air is added until the pipe reaches a certain pressure. The test consists of measuring the time required for the pressure in the test section to drop approximately 1 psi (7 kilopascals). The measured time must be equal to or greater than the required time described in the Standard Specifications.

Metal storm sewer pipe will require the same protective coating to resist corrosion as required for culvert pipe. In addition, coatings may also be required for ungasketed helical seam metal pipes to enable them to pass one of the pressure tests described above. For example, Treatment 1, as described in Section 8-5.3.1 is needed to satisfy the pressure test for an ungasketed helical lock seam pipe. Gasketed helical lock seams, and welded and remetalized seams are tight enough to pass the pressure test without a coating, but may still require a coating for corrosion purposes in some areas of the state. Pipe used for storm sewers must be compatible with the structural fill height tables for maximum and minimum amounts of cover shown in Section 8-11.

8-1.5 Sanitary Sewer Pipe

Sanitary sewers consist of pipes and manholes intended to carry either domestic or industrial sanitary wastewater. Any sanitary sewer work on WSDOT projects will usually be a replacement or relocation of existing sanitary sewers for a municipal sewer system. Because of this the pipe materials will usually be in accordance with the requirements of the local sewer district and or Section 7-17 of the Standard Specifications. Sanitary wastewater is fairly corrosive regardless of location and therefore pipe materials and treatments should be chosen accordingly.

Pressure testing is always required on sanitary sewers to minimize groundwater infiltration or sewer water exfiltration. The testing is performed in accordance with Division 7-17 of the Standard Specifications. As with storm sewers, the contractor has the option of conducting an exfiltration, infiltration, or low-pressure air test. The primary difference between the tests for storm sewers versus the tests for sanitary sewers is that the allowable leakage rate for sanitary sewers is less than the allowable leakage rate for storm sewers.

8-2 Pipe Materials

Various types of pipe material are available for each of the classifications described in Section 8-1. Each type of material has unique properties for structural design, corrosion/ abrasion resistance, and hydraulic characteristics which are further discussed throughout this section to assist the designer in selecting the appropriate pipe materials.

A number of pipe materials are acceptable on WSDOT projects depending on the pipe classification; see section 7 of the Standard Specifications. It is WSDOT's policy is to allow and encourage all schedule pipe alternates that will ensure a properly functioning pipe at a reasonable cost. If at any specific location one or more of the schedule pipe alternates are not satisfactory or if the project has been designed for a specific pipe material, the schedule alternate or alternates shall be so stated on the plans usually on the structure note sheet. Pipe materials should conform to this manual, the Standard Specifications, and WSDOT's Standard Plans for Road, Bridge, and Municipal Construction.

Justification for not providing a pipe material, as limited by the allowable fill heights, corrosion zones, soil resistivity, and the limitations of pH for steel and aluminum pipe shall be justified in the Hydraulic Report (see Appendix 1-3) and within the PS\&E. Cost will not normally be a sufficient reason except in large structures such as box culverts or structural plate pipes. Frequently, structural requirements may have more control over acceptable material than will hydraulic requirements.

When drain, culvert, or sewer pipe is being constructed for the benefit of cities or counties as part of the reconstruction of their facilities and they request a certain type of pipe, the designer may specify a particular type without alternates; however, the city or county must submit a letter stating their justification. Existing culverts should be extended with the same pipe material and no alternates are required.

8-2.1 Concrete Pipe

8-2.1.1 Concrete Drain Pipe

Concrete drain pipe is non-reinforced and meets the requirements of ASTM C 118. The strength requirements for concrete drain pipe are less than the strength requirements for other types of concrete pipe. Also, concrete drain pipe can be installed without the use of o-ring gaskets or mortar, which tends to permit water movement into and out of the joints.

8-2.1.2 Concrete Underdrain Pipe

Concrete underdrain pipe is perforated, non-reinforced, and meets the requirements of AASHTO M 175. The strength requirements for concrete underdrain pipe are the same as the strength requirements for plain concrete culvert pipe.

8-2.1.3 Concrete Culvert, Storm and Sanitary Sewer Pipe

Concrete culvert, storm, and sanitary sewer pipe can be either plain or reinforced. Plain concrete pipe does not include steel reinforcing and meets the requirements of AASHTO M 86, Class 2 only. Reinforced concrete pipe meets the requirements of AASHTO M 170, Classes I through V. The amount of reinforcement in the pipe increases as the class designation increases. Correspondingly, the structural capacity of the pipe also increases. Due to its lack of strength, Class I reinforced concrete pipe is rarely used and is not listed in the fill height tables of Section 8-11.

The reinforcement placed in concrete pipe can be either circular or elliptical in shape. Elliptically designed reinforcing steel is positioned for tensile loading near the inside of the barrel at the crown and invert, and at the outside of the barrel at the springline. As shown in Figure 8-10.3, a vertical line drawn through the crown and invert is referred to as the minor axis of reinforcement. The minor axis of reinforcement will be clearly marked by the manufacturer, and it is extremely important that the pipe be handled and installed with the axis placed in the vertical position.

Concrete joints utilize rubber o-ring gaskets, allowing the pipe to meet the pressure testing requirements for storm sewer applications. The joints, however, do not have any tensile strength and in some cases can pull apart, as discussed in Section 8-7. For this reason, concrete pipe is not recommended for use on grades over 10 percent without the use of pipe anchors, as discussed in Section 8-8.

Concrete pipe is permitted anywhere in the state, regardless of corrosion zone, pH , or resistivity. It has a smooth interior surface, which gives it a relatively low Manning's roughness coefficient listed in Appendix 4-1. The maximum fill height for concrete pipe is limited to about 30 feet (10 m) or less. However, concrete pipe is structurally superior for carrying wheel loads with very shallow cover. For installations with less than 2 feet (0.6 m) of cover, concrete pipe is an acceptable alternative. Fill Height Table 8-11.2 lists the appropriate class of pipe that should be specified under these conditions.

Concrete is classified as a rigid pipe, which means that applied loads are resisted primarily by the strength of the pipe material, with some additional support given by the strength of the surrounding bedding and backfill. Additional information regarding the structural behavior of rigid pipes is discussed in Section 8-10.3. It is important during the installation process to insure that the pipe is uniformly supported, in order to prevent point load concentrations from occurring along the barrel or at the joints.

The weight of concrete pipe sometimes makes it difficult to handle during installation and this should be considered on certain sites. Also, in sanitary sewer applications, the build up of hydrogen sulfide could be a concern. The designer should follow the recommendations of the local sewer district or municipality when deciding if concrete pipe is an acceptable alternate at a given location.

An estimate of wall thickness for concrete pipe can be found using a simple rule of thumb. Take the inside diameter in feet and add 1 inch. For example, lets assume we have a 24 -inch (2 foot) diameter culvert. Add 1 inch to 2 feet and the estimated wall thickness is 3 inches.

8-2.2 Metal Pipe - General

Metal pipe is available in galvanized steel, aluminized steel, or aluminum alloy. All three types of material can be produced with helical corrugations, annular corrugations or as spiral rib pipe. Galvanized and aluminized steel pipe conform the requirements of AASHTO M 36, while aluminum alloy pipe conforms to the requirements of AASHTO M 196.

Metal pipe is classified as a flexible pipe, which means that applied loads are resisted primarily by the strength of the bedding and backfill surrounding the pipe, with some additional support given by the pipe material itself. Because of the dependence upon the strength of the bedding and backfill material, it is critical that metal pipe be installed in accordance with the requirements of Section 8-10.4 to ensure proper performance.

Metal pipe is available in a wide range of sizes and shapes and, depending on the type of material corrugation configuration, and can be used with fill heights up to 100 feet $(30 \mathrm{~m})$ or more. Metal pipe is susceptible to both corrosion and abrasion; methods for limiting these issues are covered in Section 8-5.3 and Section 8-6.

8-2.2.1 Helical Corrugations

Most metal pipe produced today is helically wound, where the corrugations are spiraled along the flow line. The seam for this type of pipe is continuous, and also runs helically along the pipe. The seam can be either an ungasketed lock seam (not pressure testable) or it could be gasketed lock seams (pressure testable seams). If ungasketed lock seam pipe is used in storm sewer applications, it is generally necessary to coat the pipe with Treatment 1 (Section 8-5.3.1) in order for the pipe to pass the pressure testing requirements.

Helically wound corrugations are available in several standard sizes, including $2-2 / 3$ inch pitch by $1 / 2$ inch depth (68 mm pitch by 13 mm depth), 3 inch by 1 inch (75 mm by 25 mm), and 5 inch by 1 inch (125 mm by 25 mm). The corrugation sizes are available in several different gauge thicknesses, depending on the pipe diameter and the height of fill. The larger corrugation sizes tend to be utilized as the pipe diameter exceeds about 60 inch (1500 mm). A typical corrugation section is shown in Figure 8-2.2.1.

Typical Corrugation Section

Figure 8-2.2.1
As a result of the helical manufacturing process, the Manning's roughness coefficient for smaller diameter (less than 24 inch $(600 \mathrm{~mm})$) metal pipe approaches the Manning's roughness coefficient for smooth wall pipe materials such as concrete and thermoplastic pipe. This similarity will generally allow metal pipe to be specified as an alternative to smooth wall pipe without the need to increase the diameter. However, in situations where small changes in the headwater or head loss through a system are critical, or where the pipe diameter is greater than 600 mm (24 in .), the designer should use the Manning's roughness coefficient specified in Appendix 4-1 to determine if a larger diameter metal pipe alternate is required.

8-2.2.2 Annular Corrugations

Metal pipe can be produced with annular corrugations, where the corrugations are perpendicular to the flow line of the pipe. The seams for this type of pipe are both circumferential and longitudinal, and are joined by rivets. The Manning's roughness coefficient for all annularly corrugated metal pipes is specified in Appendix 4-1. The fill heights shown in Section 8-11 apply to both helical and annular corrugated metal pipe.

The typical corrugation section shown in Figure 8-2.2.1 is the same for annular corrugations, except that annular corrugations are available only in $2-2 / 3$ inch by $1 / 2$ inch (68 mm by 13 mm) and 3 inch by 1 -inch (75 mm by 25 mm) sizes.

8-2.2.3 Spiral Rib

Spiral rib pipe utilizes the same manufacturing process as helically wound pipe, but instead of using a standard corrugation pitch and depth; spiral rib pipe is comprised of rectangular ribs between flat wall areas. A typical spiral rib section is shown in Figure 8-2.2.3. Two profile configurations are available: $3 / 4$ inch width by $3 / 4$ inch depth by $7-1 / 2$ inch pitch (19 mm by 19 mm by 190 mm) or 1 inch by 1 inch by 11 inch (19 mm by 25 mm by 292 mm). The seams for spiral rib pipe are either ungasketed lock seams for non-pressure testable applications or gasketed lock seam for pressure testable applications. If ungasketed lock seam pipe is used in storm sewer applications, it is generally necessary to coat the pipe with protective Treatment 1 (Section 8-5.3.1) in order for the pipe to pass the pressure testing requirements.

The primary advantage of spiral rib pipe is that the rectangular rib configuration provides a hydraulically smooth pipe surface for all diameters, with a Manning's roughness coefficient specified in Appendix 4-1.

Typical Spiral Rib Section

Figure 8-2.2.3

8-2.2.4 Galvanized Steel

Galvanized steel consists of corrugated or spiral rib steel pipe with $1 \mathrm{oz} . \mathrm{ft}^{2}\left(305 \mathrm{~g} / \mathrm{m}^{2}\right)$ of galvanized coating on each surface of the pipe. Plain galvanized steel pipe is the least durable pipe from a corrosion standpoint and is not permitted when the pH is less than 5 or greater than 8.5 . It is also not permitted if the soil resistivity is less than 1,000 ohm-cm. It will, however, meet the required 50 -year life expectancy for culvert and storm sewers installed in Corrosion Zone I, as described in Section 8-4. In more corrosive environments, such as Corrosion Zone II or III described in Section 8-4, galvanized steel pipe must be treated with a protective coating in order for the pipe to attain the required 50 -year service life.

8-2.2.5 Aluminized Steel

Aluminized steel consists of corrugated or spiral rib steel pipe with an aluminum protective coating applied both inside and out. The aluminized coating is more resistant to corrosion than galvanized steel pipe and is considered to meet the 50 -year life expectancy in both Corrosion Zone I and II without the use of protective coatings.

Aluminized steel is not permitted when the pH is less than 5 or greater than 8.5. It is also not permitted if the soil resistivity is less than 1,000 ohm-cm.

8-2.2.6 Aluminum Alloy

Aluminum alloy (aluminum) consists of corrugated or spiral rib pipe and has been shown to be more resistant to corrosion than either galvanized or aluminized steel. When aluminum is exposed to water and air, an oxide layer forms on the metal surface, creating a barrier between the corrosive environment and the pipe surface. As long as this barrier is allowed to form, and is not disturbed once it forms, aluminum pipe will function well.

Aluminum is considered to meet the 50-year life expectancy for both Corrosion Zone I and II. It can also be used in Corrosion Zone III, provided that the pH is between 4 and 9 , the resistivity is 500 ohm-cm or greater, and the pipe is backfilled with clean, well-draining, granular material. The backfill specified in Section 8-10.4 will meet this requirement.

Aluminum is not recommended when backfill material has a very high clay content, because the backfill material can prevent oxygen from getting to the pipe surface and consequently, the protective oxide layer will not form. For the same reason, it is generally not recommended that aluminum pipe be coated with the protective treatments discussed in Section 8-5.3.1

8-2.3 Thermoplastic Pipe - General

Thermoplastic pipe is a term used to describe a number of different types of polyethylene (PE, HDPE) and polyvinyl chloride (PVC) pipes that are allowed for use in drain, underdrain, culvert, storm sewer, and sanitary sewer applications. Not all types of thermoplastic pipe are allowed for use in all applications.

The designer must reference the appropriate section of Division 9-05 of the Standard Specifications to determine the allowable thermoplastic pipe for a given application.

Thermoplastic pipe is classified as a flexible pipe, which means that applied loads are resisted primarily by the strength of the bedding and backfill surrounding the pipe, with some additional support given by the pipe material itself. Because of the dependence upon the strength of the bedding and backfill material, it is critical that thermoplastic pipe be installed in accordance with the requirements of Section 8-10.4 to ensure proper performance.

The physical properties of thermoplastic pipe are such that the pipe is very resistant to both pH and resistivity. As a result, thermoplastic pipe is an acceptable alternate in all three corrosion zones statewide and no protective treatment is required.
Laboratory testing indicates that the resistance of thermoplastic pipe to abrasive bed loads is equal to or greater than that of other types of pipe material. However, because thermoplastic pipe cannot be structurally reinforced, it is not recommended for severely abrasive conditions as described in Figure 8.6.

The weight of thermoplastic pipe is relatively light when compared to other pipe alternatives. This can simplify handling of the pipe because large equipment may not be necessary during installation. However, the lightweight of the pipe can also lead to soil or water floatation problems in the trench, requiring additional effort to secure the line and grade of the pipe.

The allowable fill height and diameter range for thermoplastic pipe is somewhat limited. This may preclude thermoplastic pipe being specified for use in some situations.

Any exposed end of thermoplastic pipe used for culvert or storm sewer applications should be beveled to match the surrounding embankment or ditch slope. The ends should be beveled no flatter than $4: 1$, as a loss of structural integrity tends to occur after that point. It also becomes difficult to adequately secure the end of the pipe to the ground. The minimum length of a section of beveled pipe shall be at least 6 times the diameter of the pipe, measured from the toe of the bevel to the first joint under the fill slope (see Figure 8-2.3). This distance into the fill slope will provide enough cover over the top of the pipe to counteract typical hydraulic uplift forces that may occur. For thermoplastic pipe 30 inch (900 mm) in diameter and larger, it is recommended that a Standard Plan B-75.20 headwall be used in conjunction with a beveled end.

Minimum Length for Thermoplastic Pipe Beveled Ends
Figure 8-2.3

8-2.3.1 Corrugated PE Tubing for Drains and Underdrains

Corrugated PE tubing used for drains and underdrains is a single wall, corrugated interior pipe conforming to the requirements of AASHTO M 252 . It is available in diameters up to 10 inches (250 mm). This type of pipe is extremely flexible and be manipulated easily on the job site should it become necessary to bypass obstructions during installation. See Section 8-1.1 for treating the exposed end for floatation.

8-2.3.2 PVC Drain and Underdrain Pipe

PVC drain and underdrain pipe is a solid wall, smooth interior pipe conforming to the requirements of AASHTO M 278. It is available in diameters up to 200 mm (8 in .). This type of pipe is typically delivered to the job site in $6 \mathrm{~m}(20 \mathrm{ft})$ lengths and has a significant amount of longitudinal beam strength. This characteristic is useful when placing the pipe at a continuous grade but can also make it more difficult to bypass obstructions during installation. See Section 8-1.1 for treating the exposed end for floatation.

8-2.3.3 Corrugated PE Culvert and Storm Sewer Pipe

Corrugated PE used for culverts and storm sewers is a double-wall, smooth interior pipe conforming to the requirements of AASHTO M 294 Type S or D. This type of pipe can be used under all state highways, subject to the fill height and diameter limits described in Section 8-11 of this manual and Division 7-02.2 of the Standard Specifications.

The primary difference between PE used for culvert applications and PE used for storm sewer applications is the type of joint specified. In culvert applications, the joint is not completely watertight and may allow an insignificant amount of infiltration to occur. The culvert joint will prevent soils from migrating out of the pipe zone, and is intended to be similar in performance to the coupling band and gasket required for metal pipe. If a culvert is to be installed in situations where a combination of a high water table and fine-grained soils near the trench are expected, it is recommended that the joint used for storm sewer applications be specified.
The storm sewer joint will eliminate the possibility of soil migration out of the pipe zone and will provide an improved connection between sections of pipe.

In storm sewer applications, all joints must be capable of passing WSDOT's pressure test requirements. Because of this requirement, it may be possible that the allowable pipe diameter for storm sewer applications may be less than the allowable diameter for culvert applications. The designer should consult WSDOT's Qualified Products List for the current maximum allowable pipe diameter for both applications. Corrugated PE is a petroleum-based product, and it is possible under certain conditions that it will ignite. If maintenance practices such as ditch or field burning is anticipated near the inlet or outlet of a pipe, it is recommended that PE not be allowed as a pipe alternate.

8-2.3.4 Solid Wall PVC Culvert, Storm, and Sanitary Sewer Pipe

Solid wall PVC culvert, storm, and sanitary sewer pipe is a solid wall, smooth interior pipe conforming to the requirements of ASTM D 3034 SDR 35 for pipes up to 15 inches (375 mm) in diameter and ASTM F 679, Type 1 only, for pipe sizes 18 to 27 inch (450 to 625 mm). This type of pipe can be used under all state highways, subject to the fill height and diameter limits described in Section 8-11 of this manual and Divisions 7-02.2 of the Standard Specifications. This type of pipe is used primarily in water line and sanitary sewer applications, but may occasionally be used for culverts or storm sewers. The only joint available for this type of PVC pipe is a watertight joint conforming to the requirements of Division 9-05.12(1) of the Standard Specifications.

8-2.3.5 Profile Wall PVC Culvert and Storm Sewer Pipe

Profile wall PVC culvert and storm sewer pipe consists of pipe with an essentially smooth waterway wall braced circumferentially or spirally with projections or ribs, as shown in Figure 8-2.3.5. The pipe may have an open profile, where the ribs are exposed, or the pipe may have a closed profile, where the ribs are enclosed in an outer wall. Profile wall PVC culvert and storm sewer pipe must conform to the requirements of AASHTO M 304 or ASTM F794, Series 46. This pipe can be used under all state highways, subject to the fill height and diameter limits described in Section 8-11 of this manual and Divisions 7-02.2 of the Standard Specifications. The only joint available for profile wall PVC culvert and storm sewer pipe is a watertight joint conforming to the requirements of Division 9-05.12(2) of the Standard Specifications.

Typical Profile Wall PVC Cross Sections

Figure 8-2.3.5

8-2.4 Ductile Iron Pipe

Ductile iron pipe is an extremely strong, durable pipe primarily designed for use in high-pressure water distribution and sanitary sewer systems. It is acceptable to use ductile iron for culvert and storm sewers, but it is generally not a cost-effective option. Fill heights for ductile iron can be obtained from various manufacturers or by contacting the HQ Hydraulics Office.

8-2.5 Solid Wall HDPE

Solid wall high density polyethylene pipe has many uses, it is used primarily for trenchless applications but occasionally this type of pipe is used for specific applications including bridge drainage, drains or outfalls on very steep sloes, waterline installations and sanitary sewer lines. This type of pipe is engineered to provide balanced properties for strength, toughness, flexibility, wear resistance, chemical resistance and durability. The pipe may be joined using many conventional methods, but the preferred method is by heat fusion. Properly joined, the joints provide a leak proof connection that is as strong as the pipe itself. There are a wide variety of grades and cell classifications for this pipe, contact HQ Hydraulics Branch for specific pipe information.

8-3 Vacant

8-4 Pipe Corrosion Zones and Pipe Alternate Selection

Once a designer has determined the pipe classification needed for an application, the next step is to ensure the pipe durability will extend for the entire design life. Pipe durability can be evaluated by determining the corrosion and abrasion potential of a given site and then choosing the appropriate pipe material and protective treatment for that location.

In order to simplify this process, the state of Washington has been divided into three corrosion zones, based upon the general corrosive characteristics of that particular zone. A map delineating the three zones is shown in Figure 8-4. A flow chart and corresponding acceptable pipe alternate list have been developed for each of the corrosion zones and are shown in Figures 8-4.1 to 8-4.3. The flow chart and pipe alternate list summarize the information discussed in Section 8-5 related to corrosion, pH , resistivity, and protective treatments and can be used to easily develop all of the acceptable pipe alternates for a given location.

The flow charts and pipe alternate lists do not account for abrasion, as bed loads moving through pipes can quickly remove asphalt coatings applied for corrosion protection. If abrasion is expected to be significant at a given site, the guidelines discussed in Figure 8-6 should be followed.

When selecting a pipe alternative, the designer should always keep in mind the degree of difficulty that will be encountered in replacing a pipe at a future date. Drain pipes are placed relatively shallow and are easy to replace. Culverts tend to have more depth of cover and pass under the highway alignment making them more difficult to replace. Storm sewers are generally utilized in congested urban areas with significant pavement cover, high traffic use, and a multitude of other buried utilities in the same vicinity. For these reasons, storm sewers are generally considered to be the most expensive and most difficult to replace and should have a long design life. These are generalities that will serve as guidelines to the designer. When special circumstances exist (i.e., extremely high fills or extremely expensive structure excavation) the designer should use good engineering judgment to justify the cost effectiveness of a more expensive pipe option or a higher standard of protective treatment than is recommended on the Figures in this Section.

8-4.1 Corrosion Zone I

With the exceptions noted below, Corrosion Zone 1 encompasses most of Eastern Washington and is considered the least corrosive part of the state. Plain galvanized steel, untreated aluminized steel, aluminum alloy, thermoplastic, and concrete pipe may all be used in Corrosion Zone I. See Figures 8.4.1A and B for a complete listing of all acceptable pipe alternates for culvert and storm sewer applications. Treatment 1,2 or 5 is required for all storm sewers if the seams are not pressure testable (ungasketed lock seam).

Parts of Eastern Washington, which are not in Corrosion Zone I are placed into Corrosion Zone II. They include:

Okanogan Valley
Pend Oreille Valley
Disautel — Nespelem Vicinity

8-4.2 Corrosion Zone II

Most of Western Washington, with the exceptions noted below, along with the three areas of Eastern Washington identified above make up Corrosion Zone II. This is an area of moderate corrosion activity. Generally, Treatment 2 is the minimum needed to provide corrosion protection for galvanized steel culverts and storm sewers. Untreated aluminized steel, aluminum alloy, thermoplastic, and concrete pipe may be used in Corrosion Zone II. See Figures 8.4.2A and B for a complete listing of all acceptable pipe alternates for culvert and storm sewer applications.

Parts of western Washington, which are not located in Corrosion Zone II, are placed into Corrosion Zone III. They include:

1. Whatcom County Lowlands, described by the following:
a. SR 542 from its origin in Bellingham to the junction of SR 9;
b. SR 9 from the junction of SR 542 to the International boundary; and
c. All other roads and areas lying northerly and westerly of the above described routes.

2. Lower Nisqually Valley.

3. Low-lying roadways in the Puget Sound basin and coastal areas subjected to the influence of saltwater bays, marshes, and tide flats. As a general guideline, this should include areas with elevations less than 20 feet (6 meters) above the average high tide elevation. Along the Pacific coast and the Straits of Juan de Fuca, areas within 300 to 600 feet (100 to 200 meters) of the edge of the average high tide can be influenced by salt spray and should be classified as Corrosion Zone III. However, this influence can vary significantly from location to location, depending on the roadway elevation and the presence of protective bluffs or vegetation. In these situations, the designer is encouraged to evaluate existing pipes in the vicinity of the project to determine the most appropriate corrosion zone designation.

8-4.3 Corrosion Zone III

The severely corrosive areas identified above make up Corrosion Zone III. Concrete and thermoplastic pipe are allowed for use in this zone without protective treatments. Aluminum alloy is permitted only as described in Section 8-2.2.6. See Figures 8.4.3A and B for a complete listing of all acceptable pipe alternates for culvert and storm sewer applications.

	Culverts
	Schedule Pipe:
	Schedule ____Culvert Pipe
	If Schedule pipe not selected then:
	Concrete: - Plain Concrete Culvert Pipe - Cl \qquad Reinf. Concrete Culvert Pipe
	PVC: - Solid Wall PVC Culvert Pipe - Profile Wall PVC Culvert Pipe
	Polyethylene - Corrugated Polyethylene Culvert Pipe - Plain Aluminized Steel Culvert Pipe
	Steel - Plain Galvanized Steel Culvert Pipe - Plain Aluminized Steel Culvert Pipe

Aluminum:

- Plain Aluminum Culvert Pipe

Storm Sewers

Concrete:

- Plain Concrete Storm Sewer Pipe
- CI. Reinf. Concrete Storm Sewer Pipe
PVC:
Solid Wall PVC Storm Sewer Pipe Profile Wall PVC Storm Sewer Pipe
Polyethylene:
- Corrugated Polyetheylene Storm Sewer Pipe
Steel:
- Plain Galvanized Steel Storm Sewer Pipe with gasketed or welded and remetalized seams
- Treatment 1, 2, or 5 Gavanized Steel Storm Sewer Pipe
- Plain aluminized Steel Storm Sewer Pipe with gasketed or welded and remetalized seams
- Treatment 1, 2, or 5 Aluminized Steel Storm Sewer Pipe
Steel Spiral Rib:
- Plain Galvanized Steel Spiral Rib Storm Sewer Pipe with gaketed or welded and remetalized seams
- Treatment 1, 2, or 5 galvanized steel spiral rib storm sewer pipe
- Plain Aluminized Steel Spiral Rib Storm Sewer with gasketed or welded or welded and remetalized seams
- Treatment 1, 2 or 5 Aluminum Steel Spiral Rib Storm Sewer Pipe
Aluminum:
- Plain Aluminum Spiral Rib Storm Sewer Pipe with gasketed seams
- Treatment 1, 2, or 5 aluminum storm sewer pipe.
Aluminum Spiral Rib:
- Plain Aluminum Spiral Rib Storm Sewer Pipe with gasketed seams
- Treatment 1, 2, or 5 Aluminum Spiral Rib Storm Sewer Pipe

Corrosion Zone I
Acceptable Pipe Alternates and Protective Treatments
Figure 8-4.1B

Aluminum:

- Plain Aluminum Culvert Pipe

Storm Sewers

Concrete:

- Plain Concrete Storm Sewer Pipe
- Cl . Reinf. Concrete Storm Sewer Pipe

PVC:

- Solid Wall PVC Storm Sewer Pipe
- Profile Wall PVC Storm Sewer Pipe

Polyethylene:

- Corrugated Polyetheylene Storm Sewer Pipe
Steel:
- Treatment 1, 2, or 5 Galvanized Steel Storm Sewer Pipe
- Treatment 1, 2, or 5 Galvanized Steel Storm Sewer Pipe with gasketed or welded and remetalized seams
- Plain Aluminized Steel Spiral Rib Storm Sewer Pipe with gasketed or welded and remetalized seams
- Treatment 1, 2, or 5 Aluminized Steel Storm Sewer Pipe

Steel Spiral Rib:

- Treatment 1, 2, or 5 Galvanized Steel Spiral Rib Storm Sewer Pipe
- Treatment 1, 2, or 5 Galvanized Steel Spiral Rib Storm Sewer Pipe with gasketed or welded and remetalized seams
- Plain Aluminized Steel Spiral Rib Storm Sewer with gasketed or welded or welded and remetalized seams
- Treatment 1, 2, or 5 Aluminum Steel Spiral Rib Storm Sewer Pipe
Aluminum:
- Plain Aluminum Storm Sewer Pipe with gasketed seams
- Treatment 1, 2, or 5 Aluminum Storm Sewer Pipe
Aluminum Spiral Rib:
- Plain Aluminum Spiral Rib Storm Sewer Pipe with gasketed seams
- Treatment 1, 2, or 5 Aluminum Spiral Rib Storm Sewer Pipe

Corrosion Zone II

Acceptable pipe Alternates and Protective Treatments
Figure 8-4.2B

Culverts	Storm Sewers
Schedule Pipe: Schedule \qquad Culvert Pipe \qquad In. Diam. If Schedule pipe not selected then: Concrete: - Plain Concrete Culvert Pipe - Cl \qquad Reinf. Concrete Culvert Pipe PVC: - Solid Wall PVC Culvert Pipe - Profile Wall PVC Culvert Pipe Polyethylene - Corrugated Polyethylene Culvert Pipe Aluminum: - Plain Aluminum Culvert Pipe ${ }^{1}$	Concrete: - Plain Concrete Storm Sewer Pipe - Cl. \qquad Reinf. Concrete Storm Sewer Pipe PVC: - Solid Wall PVC Storm Sewer Pipe - Profile Wall PVC Storm Sewer Pipe Polyethylene: - Corrugated Polyetheylene Storm Sewer Pipe Aluminum: - Plain Aluminum Storm Sewer Pipe with gasketed seams ${ }^{1}$ Aluminum Spiral Rib: - Plain Aluminum Spiral Rib Storm Sewer Pipe with gasketed seams ${ }^{1}$

1. Can be used if the requirements of Section 8-2.2.6 are met

Corrosion Zone III

Acceptable Pipe Alternates and Protective Treatments

Figure 8-4.3B

8-5 Corrosion

Corrosion is the destructive attack on a material by a chemical or electrochemical reaction with the surrounding environment. Corrosion is generally limited to metal pipes, and the parameters that tend to have the most significant influence on the corrosion potential for a site is the soil or water pH and the soil resistivity.

8-5.1 pH

The pH is a measurement of the relative acidity of a given substance. The pH scale ranges from 1 to 14 , with 1 being extremely acidic, 7 being neutral, and 14 being extremely basic. The closer a pH value is to 7 , the less potential the pipe has for corroding. When the pH is less than 5 or greater than 8.5 , the site will be considered unsuitable and only Corrosion Zone III pipes as discussed in Section 8-4.3 are acceptable.

The total number of pH tests required for a project will vary depending on a number of different parameters including: the type of structures to be placed, the corrosion history of the site, and the project length and location. The general criteria listed below serves as minimum guidelines for determining the appropriate number of tests for a project.

1. Size and importance of the drainage structure - A project comprised of large culverts or storm sewers under an interstate or other major arterial warrant testing at each culvert or storm sewer location, while a project comprised of small culverts under a secondary highway may only need a few tests for the entire length of project.
2. Corrosion history of the project location - A site in an area of the state with a high corrosion potential would warrant more tests than a site in an area of the state with a low corrosion potential.
3. Distance of the project - Longer projects tend to pass through several different soil types and geologic conditions, increasing the likelihood of variable pH readings. Tests should be taken at each major change in soil type or topography, or in some cases, at each proposed culvert location. Backfill material that is not native to the site and that will be placed around metal pipe should also be tested.
4. Initial testing results - If initial pH tests indicate that the values are close to or outside of the acceptable range of 5 to 8.5 , or if the values vary considerably from location to location, additional testing may be appropriate.

8-5.2 Resistivity

Resistivity is the measure of the ability of soil or water to pass electric current. The lower the resistivity value, the easier it is for the soil or water to pass current, resulting in increased corrosion potential. If the resistivity is less than $1,000 \mathrm{Ohm}-\mathrm{cm}$ for a location, then Corrosion Region III pipe materials are the only acceptable alternates. Resistivity test are usually performed in conjunction with pH tests, and the criteria for frequency of pH testing shall apply to resistivity testing as well.

8-5.3 Methods for Controlling Corrosion

8-5.3.1 Protective Treatments

Metal pipe, depending on the material and the geographical location, may require a protective asphalt coating to insure corrosion resistance throughout the pipe design life. As a general guideline, research has shown that asphalt coatings can typically add 15 to 35 years of life to metal pipes. Listed below are three different protective asphalt treatments available for use. The material specifications for the protective asphalt treatments are described in Division 9-05.4(3), (4) and (6) of the Standard Specifications.

Treatment 1: Coated uniformly inside and out with asphalt. This treatment will protect the soil side of the pipe from corrosion but will only protect the waterside of the pipe from corrosion in environments that have little or no bed load moving through the pipe. Most culverts and storm sewers experience some degree of bed load, whether it is native upstream material or roadway sanding debris. The abrasive characteristics of the bed load can remove the asphalt coating relatively quickly, eliminating any corrosion resistance benefit. Consequently, this treatment is rarely specified.

As an alternative to Treatment 1 - Corrugated steel pipe may be coated on both sides with a polymer coating conforming to AASHTO M-246. The coating shall be a minimum of 10 mils thick and be composed of polyethylene and acrylic acid copolymer.

Treatment 2: Coated uniformly inside and out with asphalt and with an asphalt paved invert. This treatment differs from Treatment 1 in that the invert of the pipe is paved with asphalt. Normal water levels within a pipe generally encompass about 40 percent of the circumference of the pipe, and this is where most of the corrosion takes place. The inside coating of the pipe above the normal watermark is not usually attacked by corrosion. Below the normal watermark, the protective coating suffers from wet and dry cycles and is also exposed to abrasion. For these reasons, the bottom 40 percent of the pipe is most critical and, therefore, paved with asphalt.

As an alternative to Treatment 2 - Corrugated steel pipe may be coated on both sides with a polymer coating conforming to AASHTO M-246. The coating shall be a minimum of 10 mils thick and be composed of polyethylene and acrylic acid copolymer.

Treatment 3: No longer available.
Treatment 4: No longer available.
Treatment 5: Coated uniformly inside and out with asphalt and a 100 percent periphery inside spun asphalt lining. This treatment coats the entire inside circumference of the pipe with a thick layer of asphalt, covering the inside corrugations and creating a hydraulically smooth (see Manning's value in Appendix $4-1)$ interior. The coating also provides invert protection similar to Treatment 2. Treatment 5 can be used on ungasketed lock seam pipe to seal the seam and allow the pipe to pass a pressure test in storm sewer applications.

Treatment 6: No longer available.
The protective treatments, when required, shall be placed on circular pipe as well as pipe arch culverts. Structural plate pipes do not require protective treatment as described in Section 8-1.3.3. Protective treatments are not allowed for culverts placed in fish bearing streams. This may preclude the use of metal culverts in some applications.

The treatments specified in this section are the standard minimum applications, which are adequate for a large majority of installations; however a more stringent treatment may be used at the designers discretion. When unusual abrasive or corrosive conditions are anticipated and it is difficult to determine which treatment would be adequate, it is recommended that either the HQ Materials Laboratory or HQ Hydraulics Office be consulted.

8-5.3.2 Increased Gauge Thickness

As an alternative to asphalt protective treatments, the thickness of corrugated steel pipes can be increased to compensate for loss of metal due to corrosion or abrasion. A methodology has been developed by California Transportation Department (Caltrans) to estimate the expected service life of untreated corrugated steel pipes. The method utilizes pH , resistivity, and pipe thickness and is based on data taken from hundreds of culverts throughout California. Copies of the design charts for this method can be obtained from the Regional Hydraulics Section/Contact or from the HQ Hydraulics Office.

8-6 Abrasion

Abrasion is the wearing away of pipe material by water carrying sands, gravels, and rocks. All types of pipe material are subject to abrasion and can experience structural failure around the pipe invert if not adequately protected. Four abrasion levels have been developed to assist the designer in quantifying the abrasion potential of a site. The abrasion levels are identified in Figure 8-6. The descriptions of abrasion levels are intended to serve as general guidance only, and not all of the criteria listed for a particular abrasion level need to be present to justify placing a site at that level. Included with each abrasion level description are guidelines for providing additional invert protection. The designer is encouraged to use those guidelines in conjunction with the abrasion history of a site to achieve the desired design life of a pipe.

Sampling of the streambed materials is generally not necessary, but visual examination and documentation of the size of the materials in the stream bed and the average stream slopes will give the designer guidance on the expected level of abrasion. Where existing culverts are in place in the same drainage, the condition of the inverts should also be used as guidance. The stream velocity should be based on typical flows, such as a 6-month event, and not a 10- or 50-year event. This is because most of the abrasion will occur during those smaller events.

In streams with significant bed loads, placing culverts on flat grades can encourage bed load deposition within the culvert. This can substantially decrease the hydraulic capacity of a culvert, ultimately leading to plugging or potential roadway overtopping on the upstream side of the culvert. As a standard practice, culvert diameters should be increased two or more standard sizes over the required hydraulic opening in situations where abrasion and bed load concerns have been identified.

Abrasion Level	General Site Characteristics	Recommended Invert Protection
Non Abrasive	- Little or no bed load - Slope less than 1% - Velocities less than $3 \mathrm{ft} / \mathrm{s}$ ($1 \mathrm{~m} / \mathrm{s}$)	Generally most pipes may be used under these circumstances, if a protective treatment is deemed necessary for metal pipes, any of the protective treatments specified in Section 8-5.3.1 would be adequate.
Low Abrasive	- Minor bed loads of sands, silts, and clays - Slopes 1% to 2% - Velocities less than $6 \mathrm{ft} / \mathrm{s}$ ($2 \mathrm{~m} / \mathrm{s}$)	For metal pipes, an additional gage thickness may be specified if existing pipes in the vicinity show a susceptibility to abrasion, or any of the protective treatments specified in Section 8-5.3.1 would be adequate.
Moderate Abrasive	- Moderate bed loads of sands and gravels, with stone sizes up to about 3 inches (75 mm) - Slopes 2% to 4% - Velocities from 6 to $15 \mathrm{ft} / \mathrm{s}$ (2 to $4.5 \mathrm{~m} / \mathrm{s}$)	Metal pipes shall be specified with asphalt paved inverts and the pipe thickness shall be increased one or two standard gauges. The designer may want to consider a concrete-lined alternative. Concrete pipe and box culverts should be specified with an increased wall thickness or an increased concrete compressive strength. Thermoplastic pipe may be used without additional treatments.
Severe Abrasive	- Heavy bed loads of sands, gravel and rocks, with stones sizes up to 12 inch (300 mm) or larger - Slopes steeper than 4% - Velocities greater then $15 \mathrm{ft} / \mathrm{s}(4.5 \mathrm{~m} / \mathrm{s})$	Asphalt protective treatments will have extremely short life expectancies, sometimes lasting only a few months to a few years. Metal pipe thickness should be increased at least two standard gages, or the pipe invert should be lined with concrete. Box culverts should be specified with an increased wall thickness or an increased concrete compressive strength. Sacrificial metal pipe exhibits better abrasion characteristics than metal or concrete. However, it generally cannot be reinforced to provide additional invert protection and is not recommended in this condition.

Pipe Abrasion Levels
Figure 8.6

8-7 Pipe Joints

Culverts, storm sewers, and sanitary sewers require the use of gasketed or fused joints to restrict the amount of leakage into or out of the pipe. The type of gasket material varies, depending on the pipe application and the type of pipe material being used. The Standard Plans and Specifications should be consulted for specific descriptions of the types of joints, coupling bands, and gaskets for the various types of pipe material.

Corrugated metal pipe joints incorporate the use of a metal coupling band and neoprene gasket that strap on around the outside of the two sections of pipe to be joined. This joint provides a positive connection between the pipe sections and is capable of withstanding significant tensile forces. These joints work well in culvert applications, but usually do not meet the pressure test requirements for storm sewer applications.

Concrete pipe joints incorporate the use of a rubber o-ring gasket and are held together by friction and the weight of the pipe. Precautions must be taken when concrete pipe is placed on grades greater than 10 percent or in fills where significant settlement is expected, because it is possible for the joints to pull apart. Outlets to concrete pipe must be properly protected from erosion because a small amount of undermining could cause the end section of pipe to disjoin, ultimately leading to failure of the entire pipe system. Concrete joints, because of the o-ring gasket, function well in culvert applications and also consistently pass the pressure testing requirements for storm sewers.

Thermoplastic pipe joints vary from manufacturer to manufacturer, but are generally similar in performance to either the corrugated metal pipe joint or the concrete pipe joint described above. There are currently three types of joints available for thermoplastic pipe. They include:

- Integral bell ends that positively connect to the spigot end.
- Slip-on bell ends connected with o-ring gaskets on the spigot end.
- Strap-on corrugated coupling bands.

All three types of joints have demonstrated adequate pull-apart resistance, and can generally be used on most highway or embankment slopes.

Solid wall HDPE pipe is joined using either a mechanical fitting or more commonly the pipe is welded together using a fusion machine. Both types of joint create a water tight, positive connection that will pass the pressure test requirements for storm sewer applications.

8-8 Pipe Anchors

Pipe anchor installation is rare and usually occurs when a pipe or half pipe is replaced above ground on a very steep ($15-20 \%$ grade) or highly erosive slope. In these cases, the pipe diameter is relatively small, 10 inch (250 mm), continuous polyethylene tubing may be used without the need for anchors since there are no joints in the pipe. On larger pipes, HDPE pipe with fused joints may be used without the use of pipe anchors. For further design guidance contact HQ .

8-8.1 Thrust Blocks

Thrust blocks should be designed to help stabilize fitting (tees, valves, bends, etc.) from movement by increasing the soil bearing area. The key to sizing a thrust block is a correct determination of the soil bearing value. Values can range from less than $1000 \mathrm{lb} / \mathrm{ft}^{2}$ for soft soils to many thousands of pounds per square foot for hard rock. A correctly sized thrust block will also fail unless the block is placed against undisturbed soil with the face of the block perpendicular to the direction of and centered on the line of action of the thrust. See standard plan B-90.50 (Concrete Thrust Block) for details on placement and sizing of a thrust block for various fittings.

8-9 Pipe Rehabilitation and Abandonment

Pipes that have deteriorated over time due to either corrosion or abrasion can significantly affect the structural integrity of the roadway embankment. Once identified, these pipes should be repaired in a timely manner, as failure of the pipe could ultimately result in failure of the roadway. The first two sections describe methods for repairing pipe and the third section provides guidance for pipe abandonment. Before selecting a Trenchless Technique or abandoning a pipe, the Regional Hydraulics Engineer or the HQ Hydraulics Office should be consulted for additional information.

8-9.1 Pipe Replacement

The most common pipe repair method is to remove and replace an existing culvert, which generally requires that all or part of the roadway be closed during construction. Before deciding to replace a pipe, several factors should be considered including the; roadway ADT, size of the pipe structure involved, depth of the fill, width of the workable roadway prism, and length of detour required during construction. Pipe replacement is best suited for projects with lower ADT, shallow cover, smaller pipes, and shorter detour routes.

8-9.2 Trenchless Techniques for Pipe Replacement

Trenchless techniques for pipe replacement have become increasingly popular on Interstate and other high ADT roadways. As the name implies these methods have the ability to retrofit or completely replace a pipe with minimal trenching, and therefore minimal affect to the roadway traffic. Project sites that favor trenchless technology for a pipe rehabilitation include sites with: higher ADT, deeper cover, larger pipes, and longer detour routes.

Prior to selecting a trenchless technology, the designer should investigate the feasibility of a pipe to be rehabilitated and provide a long term repair. The investigation should include: the condition of the pipe bedding and backfill, the hydraulic capacity of the pipe, and the structural integrity of the pipe. Each of these items is summarized below:

1. Evaluate cracks in the pipe to determine if water is leak through the pipe wall, eroding the bedding material. If erosion is presence, the voids may need to be grouted to provide proper support of the rehabilitated pipe.
2. The structural integrity of the host pipe should be evaluated to determine which trenchless technology is appropriate.
3. Finally, the hydraulic analysis for a rehabilitated pipe should be the same as required for a new pipe or culvert. . Any type of liner used to rehabilitate a pipe will reduce the diameter of the pipe, thus reducing capacity. However, due to the smoothness of the new liner, the improved efficiency of the pipe may compensate for the lost capacity.

A number of rehabilitation methods are available which can restore structural integrity to the pipe including: fold and form, slip lining, pipe bursting, tunneling, horizontal directional drilling, and pipe jacking. Each of these methods is further summarized below.

Various types of liners can retrofit the pipe interior and provide additional structural support. One of these techniques is called 'fold and form' and involves pulling a folded HDPE pipe through the existing (host) pipe, the liner pipe is then inflated with hot air or water so the liner molds itself to the host pipe, sealing cracks and creating a new pipe within a pipe. The same procedure can be followed using a felt material impregnated with resins.

Sliplining is a technique that involves inserting a full round pipe with a smaller diameter into the host pipe and then filling the space between the two pipes with grout.

Pipe bursting is a technique where a pneumatically operated device moves through the host pipe, bursting it into pieces. Attached to the device is a pipe string, usually thermally fused HDPE. Using this method and depending on the soil type, the new pipe may be a larger diameter than the pipe being burst.

Tunneling, while typically much more expensive than the other methods, this may be the only feasible option for placing large diameter pipes under interstates or major arterials.

Horizontal Directional drilling (HDD) is a technique, which uses guided drilling for creating an arc profile. This technique can be used for drilling long distances such as under rivers, lagoons, or highly urbanized areas. The process involves three main stages: drilling a pilot hole, pilot whole enlargement, and pullback installation of the carrier pipe.

Pipe jacking or ramming is probably the most widely known and most commonly used method. This method advances pipe through the ground with thrust from hydraulic jacks. Pipe diameters less than 48 inches can be jacked both economically and easily. Pipe diameters to 144 inches are possible however the complexity and cost increase with the diameter of the pipe. Protective Treatments are not required on smooth-walled steel pipe used for jacking installations; however jacked pipes may require extra wall thickness to accommodate the expected jacking stresses.

8-9.3 Abandoned Pipe Guidelines

Whenever possible, abandoned pipes should be removed. However, if it is not practical to remove the pipe it may be abandoned in place with the inlet plugged following section 7-08.3(4) of the Standard Specifications. All pipes should be evaluated prior to abandonment by either the project PE, Region Hydraulic Engineer, or HQ Hydraulic Engineer to determine any potential hazards associated with a failure of the pipe. If a pipe failure could cause a collapse of the roadway prism, the pipe should either be removed or completely sealed with a Controlled Density Fill (CDF) that meets the section 2-09.3(1)E of the Standard Specifications.

8-10 Pipe Design

8-10.1 Categories of Structural Materials

Based upon material type, pipes can be divided into two broad structural categories: flexible and rigid. Alone, flexible pipes have little structural bending strength. The material, from which they are made, such as corrugated metal or thermoplastic, can be flexed or distorted significantly without cracking. Consequently, flexible pipes depend on support from the backfill to resist bending. Rigid pipes, however, are stiff and do not deflect appreciably. The material, from which they are made, such as concrete, provides the primary resistance to bending.

8-10.2 Structural Behavior of Flexible Pipes

A flexible pipe is a composite structure made up of the pipe barrel and the surrounding soil. The barrel and the soil are both vital elements to the structural performance of the pipe. Flexible pipe has relatively little bending stiffness or bedding strength on its own. As loads are applied to the pipe, the pipe attempts to deflect. In the case of round pipe, the vertical diameter decreases and the horizontal diameter increases, as shown in Figure 8-10.2. When good backfill material is well compacted around the pipe, the increase in the horizontal diameter of the pipe is resisted by the lateral soil pressure. The result is a relatively uniform radial pressure around the pipe, which creates a compressive force in the pipe walls, called thrust. The thrust can be calculated, based on the diameter of the pipe and the load placed on the top of the pipe, and is then used as a parameter in the structural design of the pipe.

As vertical loads are applied, a flexible culvert attempts to deflect. The vertical diameter decreases while the horizontal diameter increases. Soil pressures resist the increase in horizontal diameter.

Deflection of Flexible Pipes

Figure 8-10.2
A flexible pipe will be stable as long as adequate soil support is achieved around the pipe. To ensure that a stable soil envelope around the pipe is attained during construction, follow the guidelines in section 8-10.4 for backfill and installation.

8-10.3 Structural Behavior of Rigid Pipes

The load carrying capability of rigid pipes is essentially provided by the structural strength of the pipe itself, with some additional support given by the surrounding bedding and backfill. When vertical loads are applied to a rigid pipe, zones of compression and tension are created as illustrated in Figure 8-10.3. Reinforcing steel can be added to the tension zones to increase the tensile strength of concrete pipe. The minor axis for elliptical reinforcement is discussed in Section 8-2.1.

Zones of Tension and Compression in Rigid Pipes
Figure 8-10.3
Rigid pipe is stiffer than the surrounding soil and it carries a substantial portion of the applied load. Shear stress in the haunch area can be critical for heavily loaded rigid pipe on hard foundations, especially if the haunch support is inadequate. Standard Plan B-55.20 and Division 7-08 of the Standard Specifications describe the backfill material requirements and installation procedures required for placing the various types of pipe materials. The fill height tables for concrete pipe shown in Section 8-11 were developed assuming that those requirements were followed during installation.

8-10.4 Foundations, Bedding, and Backfill

A foundation capable of providing uniform and stable support is important for both flexible and rigid pipes. The foundation must be able to uniformly support the pipe at the proposed grade and elevation without concentrating the load along the pipe. Establishing a suitable foundation requires removal and replacement of any hard spots or soft spots that would result in load concentration along the pipe. Bedding is needed to level out any irregularities in the foundation and to insure adequate compaction of the backfill material. See Standard Plan B-55.20 for Pipe Zone

Bedding and Backfill and Stand Specifications Section 7-08.3(3) Backfilling for guidelines. Any trenching conditions not described in the Standard Plans or Specifications should receive prior approval from HQ Hydraulics. When using flexible pipes, the bedding should be shaped to provide support under the haunches of the pipe. When using rigid pipe, the bedding should be shaped to provide uniform support under the haunches and also shaped to provide clearance for the bell ends on bell and spigot type pipe. The importance of proper backfill for flexible and rigid pipe is discussed in Section 8-10.2 and 8-10.3 respectively. In addition to providing structural support for a pipe, the bedding and backfill must be installed properly to prevent piping from occurring. Piping is a term used to describe the movement of water around and along the outside of a pipe, washing away backfill material that supports the pipe. Piping is primarily a concern in culvert applications, where water at the culvert inlet can saturate the embankment and move into the pipe zone. Piping can be prevented through the use of headwalls, dikes, or plugs. Headwalls are described in Section 3-4.4 and dikes and plugs are discussed in Division 7-02.3(1) of the Standard Specifications.

In order to simplify measurement and payment during construction, all costs associated with furnishing and installing the bedding and backfill material within the pipe zone are included in the unit contract price of the pipe.

8-11 Structural Analysis and Fill Height Tables

The HQ Hydraulics Office, using currently accepted design methodologies, has performed a structural analysis for the various types of pipe material available. The results are shown in the fill height tables at the end of this section. The fill height tables demonstrate the maximum and minimum amounts of cover that can be placed over a pipe, assuming that the pipe is installed in accordance with WSDOT specifications. All culverts, storm sewers, and sanitary sewers shall be installed within the limitations shown in the fill height tables. The designer shall specify the same wall thickness or class of material for the entire length of a given pipe, and that will be based on the most critical load configuration experienced by any part of the pipe. This will negate the necessity of removing structurally inadequate pipe sections at some point in the future should roadway widening occur. Additionally, when selecting corrugated pipe the designer should review all of the tables in Section 8-11.3 and select the most efficient corrugation thickness for the pipe diameter. For fill heights in excess of 100 feet (30 m), special designs by the HQ Hydraulics Office will be required.

8-11.1 Pipe Cover

Pipe systems should be designed to provide at least 2 feet (0.6 m) of cover over the pipe measured from the outside diameter of the pipe to the bottom of pavement. This measurement does not include any asphalt or concrete paving above the top course. This depth tends to provide adequate structural distribution of the live load and also allows a significant number of pipe alternatives to be specified on a contract. Unless the contract plans specify a specific pipe material, the designer should design for the schedule pipe fill heights as described in Division 7 of the Standard Specifications. If there is no possibility of a wheel load over the pipe, a designer may request using non-scheduled pipe with approval from the HQ Hydraulics Office. Approval will be contingent on no possibility that an errant vehicle could pass over pipe.

During construction, more restrictive fill heights are required, and are specified in Division 1-07.7 of the Standard Specifications. The restrictive fill heights are intended to protect pipe from construction loads that can exceed typical highway design loads.

8-11.2 Shallow Cover Installation

In some cases, it is not possible to lower a pipe profile to obtain the necessary minimum cover. In those cases, concrete pipe of the class shown in Fill Height Table 8-11.3 may be specified. Included in that table are typical pipe wall thicknesses for a given diameter. The pipe thickness must be taken into consideration in low cover applications. Justification must also be included in the hydraulic report describing why it was not possible to lower the pipe profile to obtain the preferred 2 feet $(0.6 \mathrm{~m})$ of cover.

In addition to circular pipe, concrete box culverts and concrete arches are also available for use in shallow cover installations. For concrete three sided or box culverts, designers need to verify that the shallow cover will still provide HS 25 loading. Other options include ductile iron pipe, plain steel pipe, or the placement of a concrete distribution slab. The designer should consult with either the Regional Hydraulics Section/Contract or the HQ Hydraulics Engineer for additional guidance on the use of these structures in this application.

8-11.3 Fill Height Tables

	Maximum Cover in Feet				
Pipe Diameter in.	Plain AASHTO M 86	Class II AASHTO M 170	Class III AASHTO M 170	Class IV AASHTO M 170	Class V AASHTO M 170
12	18	10	14	21	26
18	18	11	14	22	28
24	16	11	15	22	28
30		11	15	23	29
36		11	15	23	29
48		12	15	23	29
60		12	16	24	30
72		12	16	24	30
84		12	16	24	30

Minimum Cover: 2 feet
Concrete Pipe
Fill Height Table 8-11.1 (English)

Pipe Diameter mm	Maximum Cover in Meters AASHTO M 86M						Class II AASHTO M 170M	Class III AASHTO M 170M	Class IV AASHTO M 170M	Class V AASHTO M 170M
	5.5	3.0	4.3	6.5	7.9					
	5.5	3.4	4.3	6.5	8.5					
600	5.0	3.4	4.6	6.5	8.5					
750		3.4	4.6	7.0	9.0					
900		3.4	4.6	7.0	9.0					
1200		3.7	4.6	7.0	9.0					
1500		3.7	4.9	7.5	9.0					
1800		3.7	4.9	7.5	9.0					
2100		3.7	4.9	7.5	9.0					

Minimum Cover: 0.6 meters

Concrete Pipe

Fill Height Table 8-11.1 (Metric)

		Minimum Cover in Feet			
$*$ Pipe Diameter in.	Pipe Wall Thick. in.	Plain AASHTO M 86	Class III AASHTO M 170	Class IV AASHTO M 170	Class V AASHTO M 170
12	2	1.5	1.5	1.0	0.5
18	2.5	1.5	1.5	1.0	0.5
24	3	1.5	1.5	1.0	0.5
30	3.5	1.5	1.5	1.0	0.5
36	4	1.5	1.5	1.0	0.5
48	5		1.5	1.0	0.5
60	6		1.5	1.0	0.5
72	7		1.5	1.0	0.5
84	8		1.5	1.0	0.5

Concrete Pipe for Shallow Cover Installations
Fill Height Table 8-11.2 (English)

		Minimum Cover in Meters			
$*$ Pipe Diameter mm	Pipe WalI Thick. mm	Plain AASHTO M 86M	Class III AASHTO M 170M	Class IV AASHTO M 170M	Class V AASHTO M 170M
300	50	0.45	0.45	0.30	0.15
450	63	0.45	0.45	0.30	0.15
600	75	0.45	0.45	0.30	0.15
750	88	0.45	0.45	0.30	0.15
900	100	0.45	0.45	0.30	0.15
1200	125		0.45	0.30	0.15
1500	150		0.45	0.30	0.15
1800	175		0.45	0.30	0.15
2100	200		0.45	0.30	0.15

Concrete Pipe for Shallow Cover Installations

Fill Height Table 8-11.2 (Metric)

Pipe Diameter in.	Maximum Cover in Feet				
	$\begin{gathered} 0.064 \mathrm{in} . \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.079 \mathrm{in} . \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.109 \text { in. } \\ 12 \mathrm{ga} . \end{gathered}$	$\begin{gathered} 0.138 \mathrm{in} . \\ 10 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.168 \mathrm{in} . \\ 8 \mathrm{ga} \end{gathered}$
12	100	100	100	100	
18	100	100	100	100	
24	98	100	100	100	100
30	78	98	100	100	100
36*	65	81	100	100	100
42*	56	70	98	100	100
48*	49	61	86	100	100
54*		54	76	98	100
60*			68	88	100
66*				80	98
72*				73	90
78*					80
84*					69

* Designers should consider the most efficient corrugation for the pipe diameter.

Minimum Cover: 2 feet
Corrugated Steel Pipe $\mathbf{2}^{2} / 3$ in. $\times 1 / 2$ in. Corrugations AASHTO M 36 Fill Height Table 8-11.3 (English)

Pipe Diameter mm	Maximum Cover in Meters				
	$\begin{gathered} 1.6 \mathrm{~mm} \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mm} \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.8 \mathrm{~mm} \\ 12 \mathrm{ga} \end{gathered}$	$\begin{gathered} 3.5 \mathrm{~mm} \\ 10 \mathrm{ga} \end{gathered}$	$\begin{gathered} 4.2 \mathrm{~mm} \\ 8 \mathrm{ga} \end{gathered}$
300	30.5	30.5	30.5	30.5	
450	30.5	30.5	30.5	30.5	
600	30	30.5	30.5	30.5	30.5
750	24	30	30.5	30.5	30.5
900	20	24.5	30.5	30.5	30.5
1050	17	21.5	30	30.5	30.5
1200	15	18.5	26	30.5	30.5
1350		16.5	23	30	30.5
1500			21	27	30.5
1650				24.5	30
1800				22.5	27.5
1950					24.5
2100					21

Minimum Cover: 0.6 meters

Corrugated Steel Pipe $68 \mathrm{~mm} \times 13 \mathrm{~mm}$ Corrugations AASHTO M 36M

Fill Height Table 8-11.3 (Metric)

Pipe Diameter in.	Maximum Cover in Feet				
	$\begin{gathered} 0.064 \mathrm{in} . \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.079 \mathrm{in} . \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.109 \mathrm{in} . \\ 12 \mathrm{ga} \end{gathered}$	$\begin{aligned} & 0.138 \mathrm{in} . \\ & \quad 10 \mathrm{ga} \end{aligned}$	$\begin{gathered} 0.168 \mathrm{in} . \\ 8 \mathrm{ga} . \end{gathered}$
36	75	94	100	100	100
42	64	80	100	100	100
48	56	70	99	100	100
54	50	62	88	100	100
60	45	56	79	100	100
66	41	51	72	92	100
72	37	47	66	84	100
78	34	43	60	78	95
84	32	40	56	72	89
90	30	37	52	67	83
96		35	49	63	77
102		33	46	59	73
108			44	56	69
114			41	53	65
120			39	50	62

* Designers should consider the most efficient corrugation for the pipe diameter.

Minimum Cover: 2 feet
Corrugated Steel Pipe 3 in. $\times 1$ in. Corrugations AASHTO M 36
Fill Height Table 8-11.4 (English)

Pipe Diameter mm	Maximum Cover in Meters				
	$\begin{gathered} 1.6 \mathrm{~mm} \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mm} \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.8 \mathrm{~mm} \\ 12 \mathrm{ga} \end{gathered}$	3.5 mm 10 ga	$\begin{gathered} 4.3 \mathrm{~mm} \\ 8 \mathrm{ga} \end{gathered}$
900	23	28.5	30.5	30.5	30.5
1050	19.5	24.5	30.5	30.5	30.5
1200	17	21.5	30	30.5	30.5
1350	15	19	27	30.5	30.5
1500	13.5	17	24	30.5	30.5
1650	12.5	15.5	22	28	30.5
1800	11.5	14.5	20	25.5	30.5
1950	10.5	13	18.5	24	29
2100	10	12	17	22	27
2250	9	11.5	16	20.5	25.5
2400		10.5	15	19	23.5
2550		10	14	18	22.5
2700			13.5	17	21
2850			12.5	16	20
3000			12	15	19

Minimum Cover: 0.6 meters
Corrugated Steel Pipe $75 \mathrm{~mm} \times 25 \mathrm{~mm}$ Corrugations AASHTO M 36M
Fill Height Table 8-11.4 (Metric)

Pipe Diameter in.	Maximum Cover in Feet				
	$\begin{gathered} 0.064 \mathrm{in} . \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.079 \mathrm{in} . \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.109 \text { in. } \\ 12 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.138 \mathrm{in} . \\ 10 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.168 \mathrm{in} . \\ 8 \mathrm{ga} \end{gathered}$
30	80	100	100	100	100
36	67	83	100	100	100
42	57	71	100	100	100
48	50	62	88	100	100
54	44	55	78	100	100
60	40	50	70	90	100
66	36	45	64	82	100
72	33	41	58	75	92
78	31	38	54	69	85
84	28	35	50	64	79
90	26	33	47	60	73
96		31	44	56	69

Minimum Cover: 2 feet

Corrugated Steel Pipe

5 in. $\times 1$ in. Corrugations AASHTO M 36
Fill Height Table 8-11.5 (English)

Pipe Diameter mm	Maximum Cover in Meters				
	$\begin{gathered} 1.6 \mathrm{~mm} \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mm} \\ 14 \mathrm{ga} \end{gathered}$	2.8 mm 12 ga	$\begin{gathered} 3.5 \mathrm{~mm} \\ 10 \mathrm{ga} \end{gathered}$	$\begin{gathered} 4.3 \mathrm{~mm} \\ 8 \mathrm{ga} \end{gathered}$
750	24.5	30.5	30.5	30.5	30.5
900	20.5	25.5	30.5	30.5	30.5
1050	17.5	21.5	30.5	30.5	30.5
1200	15	19	27	30.5	30.5
1350	13.5	17	24	30.5	30.5
1500	12	15	21.5	27.5	30.5
1650	11	13.5	19.5	25	30.5
1800	10	12.5	17.5	23	28
1950	9.5	11.5	16.5	21	26
2100	8.5	10.5	15	19.5	24
2250	8	10	14.5	18.5	22.5
2400		9.5	13.5	17	21

Minimum Cover: 0.6 meters
Corrugated Steel Pipe $125 \mathrm{~mm} \times 25 \mathrm{~mm}$ Corrugations AASHTO M 36M
Fill Height Table 8-11.5 (Metric)

Pipe Diameter in.	Minimum Cover ft.	Maximum Cover in Feet						
		$\begin{gathered} 0.111 \mathrm{in} . \\ 12 \mathrm{ga} \end{gathered}$	$\begin{array}{\|c\|} \hline 0.140 \mathrm{in} . \\ 10 \mathrm{ga} \end{array}$	$\begin{gathered} 0.170 \mathrm{in} . \\ 8 \mathrm{ga} \end{gathered}$	$\begin{aligned} & 0.188 \mathrm{in} . \\ & 7 \mathrm{ga} . \end{aligned}$	$\begin{gathered} 0.218 \mathrm{in} . \\ 5 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.249 \mathrm{in} . \\ 3 \mathrm{ga} \end{gathered}$	$\begin{gathered} 0.280 \mathrm{in} . \\ 1 \mathrm{ga} . \end{gathered}$
60	2	42	63	83	92	100	100	100
72	2	35	53	69	79	94	100	100
84	2	30	45	59	67	81	95	100
96	2	27	40	52	59	71	84	92
108	2	23	35	46	53	64	75	81
120	2	21	31	42	47	57	67	74
132	2	19	29	37	42	52	61	66
144	2	18	26	37	40	47	56	61
156	2	16	24	31	36	43	52	56
168	2	15	22	30	33	41	48	53
180	2	14	20	28	31	38	44	49
192	2		19	26	30	35	42	46
204	3		18	24	28	33	40	43
216	3			23	26	31	37	41
228	3				25	30	35	39
240	3				23	29	33	37

* 6 in. $\times 2$ in. corrugations require field assembly for multi-plate, diameter is too large to ship in full section.

Corrugated Steel Structural Plate Circular Pipe 6 in. $\times 2$ in. Corrugations
 Fill Height Table 8-11.6 (English)

Pipe Diameter Mm	Minimu m Cover m	Maximum Cover in Meters						
		$\begin{gathered} 2.8 \mathrm{~mm} \\ 12 \mathrm{ga} \end{gathered}$	$\begin{gathered} 3.5 \mathrm{~mm} \\ 10 \mathrm{ga} \end{gathered}$	$\begin{gathered} 4.5 \mathrm{~mm} \\ 8 \mathrm{ga} \end{gathered}$	$\begin{gathered} 4.8 \mathrm{~mm} \\ 7 \mathrm{ga} \end{gathered}$	$\begin{gathered} 5.5 \mathrm{~mm} \\ 5 \mathrm{ga} \end{gathered}$	$\begin{gathered} 6.5 \mathrm{~mm} \\ 3 \mathrm{ga} \end{gathered}$	$\begin{gathered} 7.0 \mathrm{~mm} \\ 1 \mathrm{ga} \end{gathered}$
1500	0.6	13	19	25.5	28	30.5	30.5	30.5
1800	0.6	10.5	16	21	24	28.5	30.5	30.5
2100	0.6	9	13.5	18	20.5	24.5	29	30.5
2400	0.6	8	12	16	18	21.5	22.5	28
2700	0.6	7	10.5	14	16	19.5	23	24.5
3000	0.6	6.5	9.5	13	14.5	17.8	20.5	22.5
3300	0.6	6	9	11.5	13	16	18.5	20
3600	0.6	5.5	8	11.5	12	14.5	17	18.5
3900	0.6	5	7	9.5	11	13	16	17
4200	0.6	4.5	6.5	9	10	12.5	14.5	16
4500	0.6	4.3	6	8.5	9.5	11.5	13.5	15
4800	0.6		6	8	9	10.5	13	14
5100	0.9		5.5	7	8.5	10	12	13
5400	0.9			7	8	9.5	11.5	12.5
5700	0.9				7.5	9	10.5	12
6000	0.9				7	9	10	11.5

Corrugated Steel Structural Plate Circular Pipe 152 mm $\times 51$ mm Corrugations
Fill Height Table 8-11.6 (Metric)

$\begin{aligned} & \text { Span } \times \text { Rise } \\ & \text { in. } \times \text { in. } . \end{aligned}$	Min. Corner Radius in.	Thickness		Minimum Cover Feet	Maximum Cover in Feet for Soil Bearing Capacity of:	
		in.	Gage		2 tons/ft ${ }^{2}$	3 tons/ft ${ }^{2}$
17×13	3	0.064	16 ga	2	12	18
21×15	3	0.064	16 ga	2	10	14
24×18	3	0.064	16 ga	2	7	13
28×20	3	0.064	16 ga	2	5	11
35×24	3	0.064	16 ga	2.5	NS	7
42×29	3.5	0.064	16 ga	2.5	NS	7
49×33	4	0.079	14 ga	2.5	NS	6
57×38	5	0.109	12 ga	2.5	NS	8
64×43	6	0.109	12 ga	2.5	NS	9
71×47	7	0.138	10 ga	2	NS	10
77×52	8	0.168	8 ga	2	5	10
83×57	9	0.168	8 ga	2	5	10

NS = Not Suitable
Corrugated Steel Pipe Arch $\mathbf{2}^{2 / 3}$ in. $\times 1 / 2 \mathrm{in}$. Corrugations AASHTO M 36
Fill Height Table 8-11.7 (English)

$\begin{aligned} & \text { Span } \times \\ & . \text { Rise } \\ & \mathrm{mm} \times \mathrm{mm} \end{aligned}$	Min. Corner Radius mm	Thickness		Min. Cover M	Maximum Cover in Meters for Soil Bearing Capacity of:	
		Mm	Gage		191 kPa	290 kPa
430×330	75	1.6	16 ga	0.6	3.7	5.5
530×380	75	1.6	16 ga	0.6	3	4.3
610×460	75	1.6	16 ga	0.6	2.1	4.0
710×510	75	1.6	16 ga	0.6	1.5	3.4
885×610	75	1.6	16 ga	0.8	NS	2.1
1060×740	88	1.6	16 ga	0.8	NS	2.1
1240×840	100	2.0	14 ga	0.8	NS	1.8
1440×970	125	2.8	12 ga	0.8	NS	2.4
1620×1100	150	2.8	12 ga	0.8	NS	2.7
1800×1200	175	3.5	10 ga	0.6	NS	3
1950×1320	200	4.3	8 ga	0.6	1.5	3
2100×1450	225	4.3	8 ga	0.6	1.5	3

NS = Not Suitable
Corrugated Steel Pipe Arch $68 \mathrm{~mm} \times 13 \mathrm{~mm}$ Corrugations AASHTO M 36M
Fill Height Table 8-11.7 (Metric)

Span \times Rise in. \times in.	Corner Radius in.	Thickness		Min. Cover Feet	Maximum Cover in Ft for Soil Bearing Capacity of:	
		in.	Gage		$\mathbf{3}^{\mathbf{3} \text { tons/ft }{ }^{2}}$	
40×31	5	0.079	14 ga	2.5	8	12
46×36	6	0.079	14 ga	2	8	13
53×41	7	0.079	14 ga	2	8	13
60×46	8	0.079	14 ga	2	8	13
66×51	9	0.079	14 ga	2	9	13
73×55	12	0.079	14 ga	2	11	16
81×59	14	0.079	14 ga	2	11	17
87×63	14	0.079	14 ga	2	10	16
95×67	16	0.079	14 ga	2	11	17
103×71	16	0.109	12 ga	2	10	15
112×75	18	0.109	12 ga	2	10	16
117×79	18	0.109	12 ga	2	10	15
128×83	18	0.138	10 ga	2	9	14
137×87	18	0.138	10 ga	2	8	13
142×91	18	0.168	10 ga	2	7	12

Corrugated Steel Pipe Arch 3 in. $\times 1$ in. Corrugations AASHTO M36
Fill Height Table 8-11.8 (English)

$\begin{gathered} \text { Span } \times \text { Rise } \\ \mathrm{mm} \times \mathrm{mm} \end{gathered}$	Corner Radius mm	Thickness		Min. Cover Mm	Maximum Cover in m for Soil Bearing Capacity of:	
		mm	Gage		190 kPa	290 kPa
1010×790	125	2.0	14 ga	0.8	2.4	3.7
1160×920	150	2.0	14 ga	0.6	2.4	4
1340×1050	175	2.0	14 ga	0.6	2.4	4
1520×1170	200	2.0	14 ga	0.6	2.4	4
1670×1300	225	2.0	14 ga	0.6	2.7	4
1850×1400	300	2.0	14 ga	0.6	3.4	4.9
2050×1500	350	2.0	14 ga	0.6	3.4	5.2
2200×1620	350	2.0	14 ga	0.6	3	4.9
2400×1720	400	2.0	14 ga	0.6	3.4	5.2
2600×1820	400	2.8	12 ga	0.6	3	4.5
2840×1920	450	2.8	12 ga	0.6	3	4.9
2970×2020	450	2.8	12 ga	0.6	3	4.5
3240×2120	450	3.5	10 ga	0.6	2.7	4.3
3470×2220	450	3.5	10 ga	0.6	2.4	4
3600×2320	450	4.3	8 ga	0.6	2.1	3.7

Corrugated Steel Pipe Arch $75 \mathrm{~mm} \times 25 \mathrm{~mm}$ Corrugations AASHTO M-36M
Fill Height Table 8-11.8 (Metric)

Span \times Rise ft.-in. \times ft.-in.	Corner Radius in.	Thickness		2 TSF Soil Bearing Capacity		3 TSF Soil Bearing Capacity	
		in.	Gage	Min. Cover ft.	Max. Cover ft.	Min. Cover ft.	Max. Cover ft.
6-1×4-7	18	0.111	12 ga	2	16	2	24
7-0 \times 5-1	18	0.111	12 ga	2	14	2	21
$7-11 \times 5-7$	18	0.111	12 ga	2	13	2	19
8-10×6-1	18	0.111	12 ga	2	11	2	17
$9-9 \times 6-7$	18	0.111	12 ga	2	10	2	15
$10-11 \times 7-1$	18	0.111	12 ga	2	9	2	14
$11-10 \times 7-7$	18	0.111	12 ga	2	7	2	13
$12-10 \times 8-4$	18	0.111	12 ga	2.5	6	2	12
$13-3 \times 9-4$	31	0.111	12 ga	2	13	2	17*
$14-2 \times 9-10$	31	0.111	12 ga	2	12	2	16*
$15-4 \times 10-4$	31	0.140	10 ga	2	11	2	15*
$16-3 \times 10-10$	31	0.140	10 ga	2	11	2	14*
$17-2 \times 11-4$	31	0.140	10 ga	2.5	10	2.5	13*
18-1×11-10	31	0.168	8 ga	2.5	10	2.5	12*
$19-3 \times 12-4$	31	0.168	8 ga	2.5	9	2.5	13
$19-11 \times 12-10$	31	0.188	6 ga	2.5	9	2.5	13
$20-7 \times 13-2$	31	0.188	6 ga	3	7	3	13

* Fill limited by the seam strength of the bolts. TSF: tons per square foot

Additional sizes are available. Contact the OSC Hydraulics Office for more information.
Corrugated Steel Structural Plate Pipe Arch 6 in. $\times 2$ in. Corrugations

$\begin{aligned} & \text { Span } \times \text { Rise } \\ & \mathbf{M m} \times \mathbf{m m} \end{aligned}$	Corner Radius mm	Thickness		190 kPa Soil Bearing Capacity		290 kPa Soil Bearing Capacity	
		mm	Gage	Min. Cover m	Max. Cover m	Min. Cover m	Max. Cover m
1850×1400	457	2.8	12 ga	0.6	5	0.6	7
2130×550	457	2.8	12 ga	0.6	4.3	0.6	6.5
2410×1700	457	2.8	12 ga	0.6	4	0.6	6
2690×1850	457	2.8	12 ga	0.6	3.4	0.6	5
2970×2010	457	2.8	12 ga	0.6	3	0.6	4.5
3330×2160	457	2.8	12 ga	0.6	2.7	0.6	4.3
3610×2310	457	2.8	12 ga	0.6	2.1	0.6	4
3910×2540	457	2.8	12 ga	0.8	1.8	0.6	3.7
4040×2840	787	2.8	12 ga	0.6	4	0.6	5
4320×3000	787	2.8	12 ga	0.6	3.7	0.6	5
4670×3150	787	3.5	10 ga	0.6	3.4	0.6	4.5
4950×3300	787	3.5	10 ga	0.6	3.4	0.6	4.3
5230×3450	787	3.5	10 ga	0.8	3	0.8	4
5510×3610	787	4.5	8 ga	0.8	3	0.8	3.7
5870×3760	787	4.5	8 ga	0.8	2.7	0.8	4
6070×3910	787	4.8	6 ga	0.8	2.7	0.8	4
6270×4010	787	4.8	6 ga	0.9	2.1	0.9	4

* Fill limited by the seam strength of the bolts.

Additional sizes are available. Contact the OSC Hydraulics Office for more information.
Corrugated Steel Structural Plate Pipe Arch $152 \mathrm{~mm} \times 51 \mathrm{~mm}$ Corrugations
Fill Height Table 8-11.9 (Metric)

Pipe Diameter in.	Maximum Cover in Feet				
	$\begin{gathered} 0.060 \mathrm{in} . \\ (16 \mathrm{ga}) \end{gathered}$	$\begin{gathered} 0.075 \mathrm{in} . \\ (14 \mathrm{ga}) \end{gathered}$	$\begin{gathered} 0.105 \mathrm{in} . \\ (12 \mathrm{ga}) \end{gathered}$	$\begin{aligned} & 0.135 \mathrm{in} \\ & (10 \mathrm{ga}) \end{aligned}$	0.164 in. (8 ga)
12	100	100			
18	75	94	100		
24	56	71	99		
30		56	79		
36		47	66	85	
42			56	73	
48			49	63	78
54			43	56	69
60				50	62
66					56
72					45

Minimum Cover: 2 Feet
Aluminum Pipe $2^{2 / 3}$ in. $\times 1 / 2$ in. Corrugations AASHTO M 196
Fill Height Table 8-11.10 (English)

Pipe Diameter mm	Maximum Cover in Meters				
	$\begin{aligned} & 1.5 \mathrm{~mm} \\ & (16 \mathrm{ga}) \end{aligned}$	$\begin{aligned} & 1.9 \mathrm{~mm} \\ & (14 \mathrm{ga}) \end{aligned}$	2.7 mm (12 ga)	$\begin{aligned} & 3.4 \mathrm{~mm} \\ & (10 \mathrm{ga}) \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{~mm} \\ & (8 \mathrm{ga}) \end{aligned}$
300	30.5	30.5			
450	23	28.5	30.5		
600	17	21.5	30		
750		56	24		
900		14.5	20	26	
1050			17	22	
1200			15	19	24
1350			13	17	21
1500				15	19
1650					17
1800					13.5

Minimum Cover: 0.6 meters
Aluminum Pipe $68 \mathrm{~mm} \times 13 \mathrm{~mm}$ Corrugations AASHTO M 196M
Fill Height Table 8-11.10 (Metric)

Pipe Diameter in.	Maximum Cover in Feet				
	$\begin{gathered} 0.060 \mathrm{in} . \\ (16 \mathrm{ga}) \end{gathered}$	$\begin{gathered} 0.075 \mathrm{in} . \\ (14 \mathrm{ga}) \end{gathered}$	$\begin{gathered} 0.105 \mathrm{in} . \\ (12 \mathrm{ga}) \end{gathered}$	$\begin{gathered} 0.135 \mathrm{in} . \\ (10 \mathrm{ga}) \end{gathered}$	0.164 in. (8 ga)
36	43	65	76	98	
42	36	46	65	84	
48	32	40	57	73	90
54	28	35	50	65	80
60		32	45	58	72
66		28	41	53	65
72		26	37	48	59
78		24	34	44	55
84			31	41	51
90			29	38	47
96			27	36	44
102				33	41
108				31	39
114					37
120					35

Minimum Cover: 2 Feet

Aluminum Pipe 3 in. $\times 1$ in. Corrugations AASHTO M 196

Fill Height Table 8-11.11 (English)

\qquad	Maximum Cover in Meters				
	1.5 mm (16 ga)	$\begin{aligned} & 1.9 \mathrm{~mm} \\ & (14 \mathrm{ga}) \end{aligned}$	2.7 mm (12 ga)	$\begin{aligned} & 3.4 \mathrm{~mm} \\ & (10 \mathrm{ga}) \end{aligned}$	4.2 mm (8 ga)
900	13	20	23	30	
1050	11	14	20	25.5	
1200	9.5	12	17.5	22	27.5
1350	8.5	10.5	15	20	24.5
1500		9.5	13.5	17.5	22
1650		8.5	12.5	16	20
1800		8.0	11.5	14.5	18
1950		7.5	10.5	13.5	17
2100			9.5	12.5	15.5
2250			9.0	11.5	14.5
2400			8.0	11	13.5
2550				10	12.5
2700				9.5	12
2850					11.5
3000					10.5

Minimum Cover: 0.6 meters
Aluminum Pipe $\mathbf{7 5 m m} \times 25 \mathrm{~mm}$ Corrugations
Fill Height Table 8-11.11 (metric)

Pipe Dia. In.	Maximum Cover in Feet							
	$\mathbf{0 . 1 0 0} \mathbf{i n .}$	$\mathbf{0 . 1 2 5} \mathbf{i n .}$	$\mathbf{0 . 1 5 0} \mathbf{i n .}$	$\mathbf{0 . 1 7 5} \mathbf{i n .}$	$\mathbf{0 . 2 0 0}$ in.	$\mathbf{0 . 2 2 5} \mathbf{~ i n . ~}$	$\mathbf{0 . 2 5 0} \mathbf{i n .}$	
60	31	45	60	70	81	92	100	
72	25	37	50	58	67	77	86	
84	22	32	42	50	58	66	73	
96	19	28	37	44	50	57	64	
108	17	25	33	39	45	51	57	
120	15	22	30	35	40	46	51	
132	14	20	27	32	37	42	47	
144	12	18	25	29	33	38	43	
156		17	23	27	31	35	39	
168			31	25	29	33	36	
180				23	27	30	34	

Minimum Cover: 2 feet
Aluminum Structural Plate
9 in. $\times 2$ in. Corrugations With Galvanized Steel Bolts
Fill Height Table 8-11.12 (English)

Pipe Dia. mm.	Maximum Cover in Meters							
	$\mathbf{2 . 5 ~ m m}$	$\mathbf{3 . 2 ~ \mathbf { ~ m m }}$	$\mathbf{3 . 8} \mathbf{~ m m}$	$\mathbf{4 . 4} \mathbf{~ m m}$	$\mathbf{5 . 1 ~ \mathbf { m m }}$	$\mathbf{5 . 7} \mathbf{~ m m}$	$\mathbf{6 . 4} \mathbf{~ m m}$	
1500	9.5	13.5	18.5	21.5	24.5	28	30.5	
1800	7.5	11.5	15	17.5	20.5	23.5	26	
2100	6.5	10	13	15	17.5	20	22.5	
2400	6	8.5	11.5	13.5	15	17.5	19.5	
2700	5	7.5	10	12	13.5	15.5	17.5	
3000	4.5	6.5	9	10.5	12	14	15.5	
3300	4.3	6	8	10	11.5	13	14.5	
3600	3.7	5.5	7.5	9	10	11.5	13	
3900		5	7	8	9.5	10.5	12	
4200			6.5	7.5	9	10	11	
4500				7	8	9	10.5	

Minimum Cover: 0.6 meters

Aluminum Structural Plate 230 mm $\times 64$ mm Corrugations With Galvanized Steel Bolts
Fill Height Table 8-11.12 (Metric)

Span \times Rise in. \times in.	Corner Radius In.	Thickness		Min. Cover Feet	Maximum Cover in Feet for Soil Bearing Capacity of:	
		in.	Gage		2 tons/ft ${ }^{2}$	3 tons/ft ${ }^{2}$
17×13	3	0.060	16 ga	2	12	18
21×15	3	0.060	16 ga	2	10	14
24×18	3	0.060	16 ga	2	7	13
28×20	3	0.075	14 ga	2	5	11
35×24	3	0.075	14 ga	2.5	NS	7
42×29	3.5	0.105	12 ga	2.5	NS	7
49×33	4	0.105	12 ga	2.5	NS	6
57×38	5	0.135	10 ga	2.5	NS	8
64×43	6	0.135	10 ga	2.5	NS	9
71×47	7	0.164	8 ga	2	NS	10

NS = Not Suitable
Aluminum Pipe Arch
2 $2 / 3 \times 1 / 2$ Corrugations
Fill Height Table 8-11.13 (English)

Span \times Rise $\mathrm{mm} \times \mathrm{mm}$	Corner Radius mm	Thickness		Min. Cover m	Maximum Cover in Meters for Soil Bearing Capacity of:	
		mm	Gage		190 kPa	290 kPa
430×330	75	1.5	16 ga	0.6	3.7	5.5
530×380	75	1.5	16 ga	0.6	3	4.3
610×460	75	1.5	16 ga	0.6	2.1	4
710×510	75	1.9	14 ga	0.6	1.5	3.4
885×610	75	1.9	14 ga	0.8	NS	2.1
1060×740	89	2.7	12 ga	0.8	NS	2.1
1240×840	102	2.7	12 ga	0.8	NS	1.8
1440×970	127	3.4	10 ga	0.8	NS	2.4
1620×1100	152	3.4	10 ga	0.8	NS	2.7
1800×1200	178	4.2	8 ga	0.6	NS	3.0

NS = Not Suitable

Aluminum Pipe Arch
 $68 \mathrm{~mm} \times 13 \mathrm{~mm}$ Corrugations AASHTO M 196M

Fill Height Table 8-11.13 (Metric)

$\begin{aligned} & \text { Span } \times \text { Rise } \\ & \text { in. } \times \text { in. } . \end{aligned}$	Corner Radius in.	Thickness		Min. Cover Feet	Maximum Cover in Feet for Soil Bearing Capacity of:	
		in.	Gage		2 tons/ft ${ }^{\text {2 }}$	3 tons/ft ${ }^{2}$
40×31	5	0.075	14 ga	2.5	8	12
46×36	6	0.075	14 ga	2	8	13
53×41	7	0.075	14 ga	2	8	13
60×46	8	0.075	14 ga	2	8	13
66×51	9	0.060	14 ga	2	9	13
73×55	12	0.075	14 ga	2	11	16
81×59	14	0.105	12 ga	2	11	17
87×63	14	0.105	12 ga	2	10	16
95×67	16	0.105	12 ga	2	11	17
103×71	16	0.135	10 ga	2	10	15
112×75	18	0.164	8 ga	2	10	16

Aluminum Pipe Arch 3×1
Corrugations AASHTO M 196
Fill Height Table 8-11.14 (English)

$\begin{gathered} \text { Span } \times \text { Rise } \\ \mathrm{mm} \times \mathrm{mm} \end{gathered}$	Corner Radius mm	Thickness		Min. Cover m	Maximum Cover in Feet for Soil Bearing Capacity of:	
		mm	Gage		190 kPa	290 kPa
1010×790	127	1.9	14 ga	0.8	2.4	3.7
1160×920	152	1.9	14 ga	0.6	2.4	4
1340×1050	178	1.9	14 ga	0.6	2.4	4
1520×1170	203	1.9	14 ga	0.6	2.4	4
1670×1300	229	1.9	14 ga	0.6	2.7	4
1850×1400	305	1.9	14 ga	0.6	3.4	5
2050×1500	356	1.7	12 ga	0.6	3.4	5
2200×1620	356	2.7	12 ga	0.6	3	5
2400×1720	406	2.7	12 ga	0.6	3.4	5
2600×1820	406	3.4	10 ga	0.6	3	4.5
2840×1920	457	4.2	8 ga	0.6	3	5

Aluminum Pipe Arch $75 \mathrm{~mm} \times 25 \mathrm{~mm}$
Corrugations AASHTO M 196M
Fill Height Table 8-11.14 (Metric)

Span \times Rise $\mathrm{ft}-\mathrm{in} \times \mathrm{ft}-\mathrm{in}$		Corner Radius in.	Minimum Gage Thickness in.	Min. Cover ft.	Maximum Cover ${ }^{(1)}$ in Feet For Soil Bearing Capacity of:		
		2 tons/ft ${ }^{2}$			3 tons/ft ${ }^{2}$		
a	$5-11 \times 5-5$		31.8	0.100	2	24*	24*
b	$6-11 \times 5-9$	31.8	0.100	2	22*	22*	
c	$7-3 \times 5-11$	31.8	0.100	2	20*	20*	
d	$7-9 \times 6-0$	31.8	0.100	2	28*	18*	
e	$8-5 \times 6-3$	31.8	0.100	2	17*	17*	
f	$9-3 \times 6-5$	31.8	0.100	2	15*	15*	
g	$10-3 \times 6-9$	31.8	0.100	2	14*	14*	
h	$10-9 \times 6-10$	31.8	0.100	2	13^{*}	13*	
i	$11-5 \times 7-1$	31.8	0.100	2	12*	12*	
j	12-7×7-5	31.8	0.125	2	14	16*	
k	$12-11 \times 7-6$	31.8	0.150	2	13	14*	
I	13-1×8-2	31.8	0.150	2	13	18*	
m	$13-11 \times 8-5$	31.8	0.150	2	12	17*	
n	$14-8 \times 9-8$	31.8	0.175	2	12	18	
0	$15-4 \times 10-0$	31.8	0.175	2	11	17	
p	$16-1 \times 10-4$	31.8	0.200	2	10	16	
q	$16-9 \times 10-8$	31.8	0.200	2.17	10	15	
r	$17-3 \times 11-0$	31.8	0.225	2.25	10	15	
s	$18-0 \times 11-4$	31.8	0.255	2.25	9	14	
t	$18-8 \times 11-8$	31.8	0.250	2.33	9	14	

*Fill limited by the seam strength of the bolts.
(1) Additional sizes and varying cover heights are available, depending on gage thickness and reinforcement spacing. Contact the OSC Hydraulics Office for more information.

Aluminum Structural Plate Pipe

Arch 9 in. $\times 2 \frac{2}{3}$ in. Corrugations,

$1 / 4$ in. Steel Bolts, 4 Bolts/Corrugation

Fill Height Table 8-11.15 (English)

$\begin{gathered} \text { Span } \times \text { Rise } \\ \mathrm{mm} \times \mathbf{m m} \end{gathered}$		Corner Radius mm	Minimum Gage Thickness mm	Min. Cover m	Maximum Cover ${ }^{(1)}$ in Feet for Soil Bearing Capacity of:		
		190 kPa			290 kPa		
a	1800×1650		808	2.5	0.6	7*	7*
b	2100×1750	808	2.5	0.6	6.5*	6.5*	
c	2210×1800	808	2.5	0.6	6*	6*	
d	2360×1830	808	2.5	0.6	5.5*	5.5*	
e	2570×1910	808	2.5	0.6	5*	5*	
f	2820×1960	808	2.5	0.6	4.5*	4.5*	
g	3120×2060	808	2.5	0.6	4.3*	4.3*	
h	3280×2080	808	2.5	0.6	4*	4*	
i	3480×2160	808	2.5	0.6	3.7*	3.7*	
j	3840×2260	808	3.2	0.6	4.3	5*	
k	3940×2290	808	3.8	0.6	4	4.3*	
I	3990×2490	808	3.8	0.6	4	5.5*	
m	4240×2570	808	3.8	0.6	3.7	5*	
n	4470×2950	808	4.4	0.6	3.7	5.5	
0	4670×3050	808	4.4	0.6	3.4	5	
p	4900×3150	808	5.1	0.6	3	5	
q	5110×3250	808	5.1	0.67	3	4.5	
-	5260×3350	808	5.7	0.69	3	4.5	
S	5490×3450	808	6.4	0.69	2.7	4.3	
t	5690×3560	808	6.4	0.71	2.7	4.3	

*Fill limited by the seam strength of the bolts.
(1) Additional sizes and varying cover heights are available, depending on gage thickness and reinforcement spacing. Contact the OSC Hydraulics Office for more information.

Aluminum Structural Plate Pipe
Arch $230 \mathrm{~mm} \times 64 \mathrm{~mm}$ Corrugations,
19 mm Steel Bolts, 4 Bolts/Corrugation
Fill Height Table 8-11.15 (Metric)

Diameter in.	Maximum Cover in Feet		
	$\mathbf{0 . 0 6 4} \mathbf{~ i n . ~}$ $\mathbf{1 6} \mathbf{~ g a}$	$\mathbf{0 . 0 7 9} \mathbf{~ i n . ~}$ $\mathbf{1 4} \mathbf{~ g a}$	$\mathbf{0 . 1 0 9} \mathbf{~ i n . ~}$ $\mathbf{1 2} \mathbf{~ g a ~}$
	50	72	
24	50	72	100
30	41	58	97
36	34	48	81
42	29	41	69
48	26	36	61
54	21	32	54
60	19	29	49

Minimum Cover: 2 feet
Steel and Aluminized Steel Spiral Rib Pipe
$3 / 4 \times 1 \times 111 / 2$ in. or $3 / 4 \times 3 / 4 \times 71 / 2$ in.
Corrugations AASHTO M 36
Fill Height Table 8-11.16 (English)

Diameter mm	Maximum Cover in Meters		
	$\mathbf{1 . 6} \mathbf{~ m m}$ $\mathbf{1 6} \mathbf{~ g a ~}$	$\mathbf{2 . 0} \mathbf{~ m m}$ $\mathbf{1 4} \mathbf{~ g a}$	$\mathbf{2 . 8} \mathbf{~ m m}$ $\mathbf{1 2 ~ g a ~}$
	15	22	
600	15	22	30.5
750	12.5	17.5	29.5
900	10.5	14.5	24.5
1050	9	12.5	21
1200	8	11	18.5
1350	7	10	16.5
1500	6	9	15

Minimum Cover: 0.6 meters
Steel and Aluminized Steel Spiral Rib Pipe
$19 \times 25 \times 292 \mathrm{~mm}$ r $19 \times 19 \times 191 \mathrm{~mm}$
Corrugations AASHTO M 36M
Fill Height Table 8-11.16 (Metric)

	Maximum Cover in Feet			
	$\mathbf{0 . 0 6 0} \mathbf{~ i n . ~}$ $\mathbf{1 6} \mathbf{~ g a ~}$	$\mathbf{0 . 0 7 5} \mathbf{~ i n . ~}$ $\mathbf{1 4} \mathbf{~ g a ~}$	$\mathbf{0 . 1 0 5} \mathbf{~ i n . ~}$ $\mathbf{1 2} \mathbf{~ g a ~}$	$\mathbf{0 . 1 3 5}$ $\mathbf{1 0} \mathbf{~ g a ~}$
	35	50		
18	34	49		
24	25	36	63	82
30	19	28	50	65
36	15	24	41	54
42		19	35	46
48		17	30	40
54		14	27	35
60		12	24	30

Minimum Cover: 2 feet
Aluminum Alloy Spiral Rib Pipe
$3 / 4 \times 1 \times 11 \frac{1}{2}$ in. or $3 / 4 \times 3 / 4 \times 71 / 2$ in.
Corrugations AASHTO M 196
Fill Height Table 8-11.17 (English)

Diameter mm	Maximum Cover in Meters			
	$\begin{gathered} 1.5 \mathrm{~mm} \\ 16 \mathrm{ga} \end{gathered}$	$\begin{gathered} 1.9 \mathrm{~mm} \\ 14 \mathrm{ga} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~mm} \\ 12 \mathrm{ga} \end{gathered}$	3.4 mm 10 ga
300	11	15		
450	10.5	14.5		
600	7.5	11	19	25
750	6	8.5	15	20
900	4.5	7.5	12.5	16.5
1050		6	10.5	14
1200		5	9	12
1350		4.3	8	10.5
1500		3.7	7.5	9

Minimum Cover: 0.6 meters
Aluminum Alloy Spiral Rib Pipe
$19 \times 25 \times 292 \mathrm{~mm}$ or $19 \times 19 \times 190 \mathrm{~mm}$ Corrugations
AASHTO M 196M
Fill Height Table 8-11.17 (Metric)

Solid Wall PVC	Profile Wall PVC	Corrugated Polyethylene
ASTM D 3034 SDR 35	AASHTO M 304	
3 in. to 15 in. dia.	or	AASHTO M 294 Type S
	ASTM F 794 Series 46	12 in. to 60 in. dia.
ASTM F 679 Type 1	4 in. to 48 in. dia.	
18 in. to 48 in. dia.	25 feet	25 feet
25 feet	All diameters	All diameters
All diameters		

Minimum Cover: 2 feet
Thermoplastic Pipe (English)
Fill Height Table 8-11.18

Solid Wall PVC	Profile Wall PVC	Corrugated Polyethylene
ASTM D 3034 SDR 35	AASHTO M 304	
75 mm to 375 mm dia.	or	AASHTO M 294 Type S
ASTM F 679 Type 1	ASTM F 794 Series 46	300 mm to 1500 mm dia.
450 mm to 1200 mm dia.	100 mm to 1200 mm dia.	
8 meters	8 meters	4 meters
All diameters	All diameters	All diameters

Minimum Cover: 0.6 meters

Thermoplastic Pipe (Metric)

Fill Height Table 8-11.18

Pipe Classifications and Materials

Chapter 9

Contact the HQ Hydraulics Office for design guidance.

